北大:LLM共情数据合成方案

在这里插入图片描述

📖标题:Synth-Empathy: Towards High-Quality Synthetic Empathy Data
🌐来源:arXiv, 2407.21669

摘要

近年来,随着大型语言模型(LLMs)的快速发展,实现出色的共情响应能力已成为关键先决条件。因此,管理和理解共情数据变得越来越重要。然而,共情数据通常是人工标注的,导致数据不足和浪费人力资源。在这项工作中,我们提出了Synth-Empathy,一种基于LLM的数据生成、质量和多样性选择管道,可以自动生成高质量的共情数据并丢弃低质量的数据。通过从低共情模型生成的数据,我们能够进一步提高共情响应性能,并在多个基准测试中实现最先进的结果。此外,我们的模型在各种人类评估基准测试中实现了最先进的性能,展示了其在实际应用中的有效性和稳健性。此外,我们展示了数据数量和质量之间的权衡,为共情数据的生成和选择提供了深入的见解。

🛎️文章简介

🔸研究问题:大语言模型(LLM)的共情反应能力越来越重要,但相关的数据很稀缺。
🔸主要贡献:论文提出了一种新的共情数据生成和筛选流程,能够生成高质量的合成共情数据集,并在多个基准测试中实现了最先进的性能。

📝重点思路

🔺相关工作

🔸为模型注入同理心以增强情感体验是AGI的一个重要方面,包括整合情感标签、外部知识、结合常识推理等方向。
🔸训练数据:LLM的出现带来了训练数据量的大幅增加,数据的质量和数量变得至关重要,也带来了数据管理、清洗和标注方面的挑战。
🔸数据合成:合成数据在构建大规模、 高质量数据集方面具有巨大潜力,当前有多重方法提高合成数据的质量、多样性和实用性。

🔺论文方案

🔸数据生成:基于权威的EmpatheticDialogues(ED)数据集,通过精心设计的提示生成共情响应。
🔸数据质量选择:使用LLM在ED数据集上微调,作为鉴别器,筛选出与ED数据集共情风格相似的高质量数据。
🔸数据多样性选择:通过结合数据特征和相似度评分,有效地识别和利用高质量数据进行共情响应。

🔎分析总结

🔸通过三维评估(连贯性、自然性和共情性),验证了生成数据集的高质量。
🔸使用合成共情响应数据微调LLM,可以在多个基准测试中实现最先进的性能。
🔸模型在基于BERT的嵌入评估中表现出优越性能,生成的文本具有更有意义和上下文准确的语义表示。
🔸模型在人类评估基准上也达到了最先进的性能,凸显了其实用性和用户友好性。

💡个人观点

论文引入了生成的高质量共情数据集,解决了共情模型实际应用中的数据限制和低效问题。

附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值