谷歌:弱模型数据合成更有助于LLM推理

在这里插入图片描述

📖标题:Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
🌐来源:arXiv, 2408.16737

摘要

🔸从强语言模型(LM)中训练高质量的合成数据是提高LM推理性能的常见策略。在这项工作中,我们重新审视了这种策略在固定推理预算(例如FLOP)下是否是计算最优的。为此,我们研究了使用更强但更昂贵的(SE)模型与较弱但更便宜的(WC)模型生成合成数据之间的权衡。
🔸我们评估了三个关键指标的生成数据:覆盖率、多样性和假阳性率,并表明来自WC模型的数据可能具有更高的覆盖率和多样性,但也表现出更高的假阳性率。然后,我们在不同设置下对SE和WC模型的数据进行微调:知识蒸馏、自我提升和一种新颖的弱到强的改进设置,其中较弱的LM向较强的LM教授推理。
🔸我们的研究结果表明,在WC生成的数据上进行微调的模型在多个基准和WC和SE模型的多种选择上始终优于在SE生成的数据中训练的模型。这些结果挑战了目前依赖SE模型生成合成数据的做法,表明WC可能是训练高级LM推理机的计算最优方法。

🛎️文章简介

🔸研究问题:在固定的计算预算下,训练大语言模型(LLM)时如何采样数据来优化训练效果?
🔸主要贡献:论文证明了在多种任务和设置下,从较弱但成本更低的语言模型(WC模型)比从较强但成本更高的语言模型(SE模型)中采样更为计算最优。

📝重点思路

🔺相关工作

🔸模型推理:人工智能的长期目标,一些工作通过提示和微调增强模型推理能力,通过规模数据上训练,在格式、代码和其他推理任务上取得了巨大的成功。
🔸模型微调:部分研究在改进合成数据,侧重于从强大但昂贵的模型中提取知识或自我改进,也可用于构建任务验证器。
🔸大小模型:功能强大的小模型运行速度更快,并且更容易为边缘设备提供服务,通过重复采样可以显著提高求解率。

🔺论文方案

🔸定义指标:比较WC模型和SE模型生成的数据,在覆盖率、多样性和假阳性率(FPR)方面的差异。
🔸模型训练:在不同的训练设置下(知识蒸馏、自我改进和弱到强改进),使用Gemma2-9B(WC)和Gemma2-27B(SE)生成的数据对模型进行微调。
🔸数据评估:在固定采样预算下,比较在MATH和GSM8K数据集上,从WC模型中采样数据进行训练的效果。
🔸消融实验:探讨在不同数据集大小下,WC模型生成数据的优势。

🔎分析总结

🔸在数学评测上,使用WC模型生成的数据进行微调比使用SE模型生成的数据性能更好,挑战了传统观点。
🔸在固定采样预算下,从WC模型中采样数据进行训练比从SE模型中采样更为计算最优。
🔸引入的“弱到强改进”训练范式在多个基准测试中显示出比传统方法更高的性能提升。
🔸在低数据集大小的情况下,WC模型生成的数据仍然能够提供性能优势。

💡个人观点

论文挑战了传统观点,弱模型合成的数据可能更合适。个人理解是类比偏好学习,弱模型合成的有助于模型探测空间,强模型合成的可能探测不到。

附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值