上海人工智能实验室:LLM公式识别指标CDM

在这里插入图片描述

📖标题:CDM: A Reliable Metric for Fair and Accurate Formula Recognition Evaluation
🌐来源:arXiv, 2409.03643

摘要

🔸由于数学表达式的结构复杂和符号多样,公式识别提出了重大挑战。尽管公式识别模型不断进步,但这些模型采用的评估指标(如BLEU和编辑距离),仍然存在明显的局限性。他们忽略了这样一个事实,即同一公式具有不同的表示形式,对训练数据的分布高度敏感,从而导致公式识别评估中的不公平。
🔸为此,我们提出了一种字符检测匹配(CDM)度量,通过设计图像级别而不是LaTexlevel度量分数来确保评估的客观性。具体来说,CDM将模型预测的LaTeX和地面真实LaTeX公式渲染为图像格式的公式,然后采用视觉特征提取和定位技术进行精确的特征级匹配,并结合空间位置信息。与之前仅依赖于基于文本的字符匹配的BLEU和编辑距离度量相比,这种空间感知和字符匹配方法提供了更准确和公平的评估。实验上,我们使用CDM、BLEU和ExpRate指标评估了各种公式识别模型。
🔸结果表明,CDM更符合人工评估标准,并通过消除不同公式表示引起的差异来提供跨不同模型的更公平的比较。

🛎️文章简介

&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值