阿里发布QWEN2.5技术报告:构建代码专家

在这里插入图片描述

📖标题:Qwen2.5-Coder Technical Report
🌐来源:arXiv, 2409.12186

摘要

🔸在本报告中,我们将介绍Qwen2.5-Coder系列,这是其前身CodeQwen1.5的重大升级。该系列包括两种型号:Qwen2.5-Coder-1.5B和Qwen2.5-Coder-7B。作为一种特定于代码的模型,Qwen2.5-Coder基于Qwen2.5架构构建,并在超过5.5万亿个代币的庞大语料库上继续进行预训练。通过细致的数据清理、可扩展的合成数据生成和平衡的数据混合,Qwen2.5-Coder在保持通用性的同时展示了令人印象深刻的代码生成能力。
🔸该模型已在广泛的代码相关任务上进行了评估,在10多个基准测试中实现了最先进的(SOTA)性能,包括代码生成、完成、推理和修复,始终优于相同模型大小的较大模型。我们认为,Qwen2.5-Coder系列的发布不仅将推动代码智能研究的边界,而且通过其宽松的许可,鼓励开发人员在现实世界的应用程序中更广泛地采用。

🛎️文章简介

🔸研究问题:如何构建和优化大规模预训练模型以在编码任务中达到顶尖性能?
🔸主要贡献:论文提出了Qwen2.5-Coder系列模型,通过广泛的预训练和微调,使其在编码任务中表现卓越,同时开源了这些模型以促进相关领域的研究和创新。

📝重点思路

🔺相关工作

🔸特定于代码的语言模型引起了广泛关注,基于预训练的LLM构建的代码LLM,包括StarCoder、CodeLlama等,但扔落后于其他专业模型。
🔸Qwen2.5-Coder在CodeQwen1.5的工作基础上,源自Qwen2.5 LLM,继承了其先进的架构和分词器。

🔺模型架构

🔸整体和Qwen2.5类似,区别在于引入了几个特殊标记帮助模型更好地理解代码。

🔺预训练

🔸语料:包含五种关键数据类型,分别为源代码数据、文本-代码对应数据、合成数据、数学数据和文本数据
🔸配比:70%代码、20%文本和10%数学的最佳混合比例
🔸训练:先在单个代码文件级预训练,再在存储库级预训练。

🔺后训练

🔸数据:包括多语言识别、github合成、多语言指令,并通过评分和验证确保质量
🔸训练:经过从粗到细的微调,采用FIM格式保证短代码训练后的长上下文能力,包括两个阶段 ①合成了数千万个低质量但多样化的指令先训练 ②用数百万个高质量指令样本,拒绝采样后训练

🔎分析总结

🔸基础模型:从代码生成、代码补全、代码推理、数学推理、通用自然语言理解和长上下文建模六个方面进行了评估,超过了其他开源语言模型。
🔸指令模型:从代码生成、代码推理、代码编辑、文本到SQL、数学推理和一般自然语言理解六个方面进行了评估,超过了其他开源语言模型。

💡个人观点

主要工作还是在数据准备上,做好多样性、高质量和配比,训练技术未公开,不如数学的技术报告。

附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值