中科院:LLM角色扮演知识错误检测

在这里插入图片描述

📖标题:Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
🌐来源:arXiv, 2409.11726

摘要

🔸大型语言模型(LLM)角色扮演受到了广泛关注,其中真实的角色知识对于构建逼真的LLM角色扮演代理至关重要。然而,现有的研究通常忽视了LLM在扮演角色时检测角色已知知识错误(KKE)和未知知识错误(UKE)的能力的探索,这将导致低质量的角色可训练语料库的自动构建。
🔸本文提出了一种探测数据集来评估LLM检测KKE和UKE错误的能力。结果表明,即使是最新的LLM也很难有效地检测到这两种类型的错误,尤其是在熟悉的知识方面。我们尝试了各种推理策略,并提出了一种基于代理的推理方法——自回忆和自怀疑(S2RD),以进一步探索提高错误检测能力的潜力。
🔸实验表明,我们的方法有效地提高了LLM检测错误字符知识的能力,但这仍然是一个需要持续关注的问题。探测数据集、提示和代码存放于https://github.com/WYRipple/rp_kw_errors

🛎️文章简介

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值