微软:LLM交互式推测规划提高agent效率

在这里插入图片描述

📖标题:Interactive Speculative Planning: Enhance Agent Efficiency through Co-design of System and User Interface
🌐来源:arXiv, 2410.00079

摘要

🔸代理作为以用户为中心的工具,越来越多地被部署用于人工任务委托,通过生成想法、与用户代理交互和制定行动计划来协助处理各种请求。然而,由于两个主要因素,基于大型语言模型(LLM)的代理通常会面临相当大的规划延迟:底层LLM因其庞大的规模和高需求而导致的效率限制,以及代理因大量生成中间思想以产生最终输出而导致的结构复杂性。
🔸鉴于服务提供的低效会破坏自动化对用户的价值,本文提出了一种以人为中心的高效代理规划方法——交互式推测规划,旨在通过系统设计和人机交互提高代理规划的效率。我们的方法提倡代理系统和用户界面的共同设计,强调了能够流畅地管理用户交互和中断的代理系统的重要性。通过将人为干预作为系统的基本组成部分,我们不仅使其更加以用户为中心,而且通过人机交互来提供准确的中间步骤,加快了整个过程。代码和数据将被发布。

🛎️文章简介

🔸研究问题:通过系统设计和人机交互的协同设计,解决代理(agent)在执行任务时的延迟现象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值