UW:LLM文化知识评估基准CulturalBench

在这里插入图片描述

📖标题:CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs
🌐来源:arXiv, 2410.02677

摘要

🔸为了使大型语言模型(LLM)在不同文化中更有帮助,必须有有效的文化知识基准来衡量和跟踪我们的进步。有效的基准需要稳健、多样化和具有挑战性。
🔸我们介绍了CULTURABENCH:一套1227个人工书写和人工验证的问题,用于有效评估法学硕士的文化知识,涵盖45个全球地区,包括孟加拉国、津巴布韦和秘鲁等代表性不足的地区。每个问题都由五个独立的注释者验证,涉及17个不同的主题,从食物偏好到问候礼仪。我们在两种设置上评估模型:CULTURABENCH Easy和CULTURABONCH Card,它们共享相同的问题,但问题不同。
🔸我们发现LLM对设置中的这种差异很敏感(例如,GPT-4o的差异为27.3%)。与人类表现(92.6%的准确率)相比,CULTURABENCH Hard对前沿LLM更具挑战性,表现最佳的模型(GPT-4o)仅为61.5%,最差的模型(Llama3-8b)为21.4%。此外,我们发现LLM经常难以回答有多个正确答案的棘手问题(例如,中国人通常使用什么器具?),这表明他们倾向于集中回答一个问题。
🔸我们的研究结果还表明,OpenAI GPT-4o在与除大洋洲以外的所有地区相关的问题上都大大优于其他专有和开源模型。尽管如此,所有模型在南美和中东相关问题上的表现一直不佳。数据见https://hf.co/spaces/kellycyy/CulturalBench

🛎️文章简介

🔸研究问题:大语言模型(LLM)在文化知识评估中存在的不足,特别是现有基准测试可能不够具有挑战性,无法有效衡量模型在文化知识方面的表现。
🔸主要贡献:论文提出了一个名为CulturalBench的更具挑战性和多样性的基准,用于评估LLM的文化知识。

📝重点思路

🔺相关工作

🔸基准质量验证不足:文化基准通常在数据收集的中间步骤进行质量检查,由于文化知识的正确性不易验证,因此必须通过对全套问题进行专家验证,然后过滤掉未达成共识的问题。
🔸主题多样性差:许多基准在数据收集之前都预先定义了主题,这意味着它们不太可能完全捕捉文化知识的多面性。
🔸过度依赖网络资源:通常源于网络语料库、维基百科,并和LLM合成结合,这些数据可能会被模型预训练期间使用。

🔺论文方案

🔸构建基准测试: 通过收集和处理大量文化相关的问题,通过多数投票筛选问题难度,构建了CulturalBench基准测试,这些问题经过人工验证,确保其具有代表性和挑战性。
🔸设置两种测试模式: 根据难度划分,首先构建简单难度的多选题,并将多选题转换为更高难度的判断题。
🔸模型评估: 零样本设置下评估了30个LLM在基准上的表现,比较了不同模型在两种测试模式下的准确率。

🔎分析总结

🔸多选题设置的局限性:模型可以通过简单的启发式方法(如选择与文化名称嵌入最相似的选项)达到40%的准确率,这表明多选题设置可能不足以评估模型的文化理解能力。
🔸判断题设置的有效性: 模型表现显著下降,最佳模型仅达到61.5%的准确率,远低于人类基准的92.6%,这表明判断题设置能更有效地评估模型的文化知识。
🔸模型在不同区域问题上的表现: 模型在涉及高度代表性区域(如北美和南亚)的问题上表现较好,但在涉及较少代表性区域(如东欧)的问题上表现较差,这反映了模型训练数据的文化偏见。
🔸多正确答案问题上的表现: 表现显著下降,揭示了模型倾向于过度收敛于单一选项的问题。

💡个人观点

论文的核心是通过构建多选题和判断题,提出了一个文化知识评估基准,并分析了题型的局限性。

附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值