Meta:探索LLM推理能力和代码生成

在这里插入图片描述

📖标题:What Makes Large Language Models Reason in (Multi-Turn) Code Generation?
🌐来源:arXiv, 2410.08105

🌟摘要

🔸思维链等提示技术已成为改善大型语言模型(LLM)输出的流行工具。然而,对于代码生成,它们的确切机制和功效尚未得到充分探索。
🔸因此,我们研究了各种提示策略的效果,重点是在多个回合和计算要求下自动重新提示。在系统地分解推理、指令和执行反馈提示后,我们对多个LLM家族和规模(Llama 3.0和3.1、8B、70B、405B和GPT-4o)的竞争性编程基准CodeContests和TACO进行了广泛的网格搜索。
🔸我们的研究揭示了在所有小样本和大样本预算的模型中持续提高性能的策略。然后,我们展示了如何使用这种最佳配置进行微调,使模型能够将诱导推理过程内部化,并提高多轮代码生成的性能和可扩展性。

🛎️文章简介

🔸研究问题:在多轮代码生成任务中,如何通过提示技术(包括推理提示和指令提示)来提高大语言模型(LLM)的推理能力和代码生成质量?
🔸主要贡献:论文提出了一个统一的框架ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值