谷歌:通过提示让LLM从相关性推断因果关系

在这里插入图片描述

📖标题:Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
🌐来源:arXiv, 2412.13952

🌟摘要

🔸大型语言模型(LLMs)的推理能力正受到越来越多的关注。在这项工作中,我们专注于因果推理,并解决了基于相关性信息建立因果关系的任务,这是一个极具挑战性的问题,几个LLM在这个问题上表现不佳。
🔸我们为这个问题引入了一种提示策略,将原始任务分解为固定的子问题,每个子问题对应于形式因果发现算法(PC算法)的一个步骤。所提出的提示策略PC-SUBQ引导LLM遵循这些算法步骤,一次用一个子问题顺序提示,用前一个问题的答案增强下一个子问题的提示。
🔸我们在现有的因果基准CORR2CAUSE上评估了我们的方法:我们的实验表明,在将PC-SUBQ与基线提示策略进行比较时,五个LLM的性能都有所提高。在修改变量名或改写表达式时,结果对因果查询扰动具有鲁棒性。

🛎️文章简介

🔸研究问题:如何从相关性陈述中推断因果关系?
🔸主要贡献:论文提出了一种名为PC-SUBQ的提示策

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值