📖标题:Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
🌐来源:arXiv, 2412.13952
🌟摘要
🔸大型语言模型(LLMs)的推理能力正受到越来越多的关注。在这项工作中,我们专注于因果推理,并解决了基于相关性信息建立因果关系的任务,这是一个极具挑战性的问题,几个LLM在这个问题上表现不佳。
🔸我们为这个问题引入了一种提示策略,将原始任务分解为固定的子问题,每个子问题对应于形式因果发现算法(PC算法)的一个步骤。所提出的提示策略PC-SUBQ引导LLM遵循这些算法步骤,一次用一个子问题顺序提示,用前一个问题的答案增强下一个子问题的提示。
🔸我们在现有的因果基准CORR2CAUSE上评估了我们的方法:我们的实验表明,在将PC-SUBQ与基线提示策略进行比较时,五个LLM的性能都有所提高。在修改变量名或改写表达式时,结果对因果查询扰动具有鲁棒性。
🛎️文章简介
🔸研究问题:如何从相关性陈述中推断因果关系?
🔸主要贡献:论文提出了一种名为PC-SUBQ的提示策