📖标题:DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction
🌐来源:arXiv, 2412.09572
🌟摘要
🔸量化大型语言模型(LLM)的事实参数知识中的不确定性,特别是在黑盒设置中,是一个重大的挑战。现有的方法通过评估对原始查询的响应中的自一致性来衡量模型的不确定性,并不总是能捕捉到真正的不确定性。模型可能会以错误的答案对原始查询做出一致的响应,但对同一查询的不同角度的不同问题做出正确的响应,反之亦然。
🔸在这篇论文中,我们提出了一种新的方法,DIVERSEAGENTENTROPY,用于使用多智能体交互来评估模型的不确定性,假设如果模型是确定的,它应该在关于同一原始查询的不同问题集合中一致地回忆原始查询的答案。我们进一步实施弃权政策,在不确定性很高时拒绝回应。
🔸我们的方法可以更准确地预测模型的可靠性,并进一步检测幻觉,优于其他基于自洽性的方法。此外,它还表明,即使知道正确答案,现有模型在各种不同的问题下也往往无法一致地检索到同一查询的正确答案。