SMU:通过置信度提高LLM响应一致性

在这里插入图片描述

📖标题:Aligning Large Language Models for Faithful Integrity Against Opposing Argument
🌐来源:arXiv, 2501.01336

🌟摘要

🔸大型语言模型(LLM)在复杂的推理任务中表现出了令人印象深刻的能力。然而,即使他们最初的陈述是正确的,他们在谈话中也很容易被不忠的论点误导。为此,我们研究了在LLM中保持诚信的问题。这涉及确保法学硕士在面对相反的论点时坚持其忠实的陈述,并在提出忠实的论点时能够纠正其不正确的陈述。
🔸在这项工作中,我们提出了一个新的框架,名为“可信完整性与置信度估计对齐”(AFICE),旨在将LLM响应与可信完整性对齐。具体来说,AFICE首先设计了一种双边置信度估计(BCE)方法,用于估计给定特定上下文的LLM生成的每个响应的不确定性,该方法同时根据解码过程中的内部状态估计模型对问题的置信度,并根据累积概率比估计模型对答案的置信度。使用BCE,我们构建了一个由上下文、原始语句和论证组成的会话偏好数据集,该数据集用于使用直接偏好优化(DPO)来对齐LLM以实现忠实的完整性。
🔸在各种基准上的广泛实验结果表明,LLM在遇到相反论点时保持忠实反应的能力有了显著提高,确保

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值