人大:通过单元测试生成器优化代码LLM

在这里插入图片描述

📖标题:Dynamic Scaling of Unit Tests for Code Reward Modeling
🌐来源:arXiv, 2501.01054

🌟摘要

🔸当前的大型语言模型(LLM)在首次尝试代码生成时往往难以产生准确的解决方案。之前的研究通过生成多个候选解决方案并使用LLM生成的单元测试对其进行验证来应对这一挑战。单元测试的执行结果作为奖励信号,以确定正确的解决方案。由于LLM总是自信地犯错,这些单元测试不可靠,从而降低了奖励信号的质量。
🔸受扩展解决方案数量可以提高LLM性能这一观察结果的启发,我们探索了扩展单元测试对提高奖励信号质量的影响。我们的开创性实验揭示了单元测试的数量与奖励信号质量之间的正相关关系,在更具挑战性的问题中观察到更大的好处。基于这些见解,我们提出了CodeRM8B,这是一种轻量级但有效的单元测试生成器,可以实现高效和高质量的单元测试扩展。此外,我们实现了一种动态缩放机制,根据问题难度调整单元测试的数量,进一步提高了效率。
🔸实验结果表明,我们的方法在三个基准上显著提高了各种模型的性能(例如,在HumanEval Plus上,Llama3-8B的增益为18.43%,GPT-4o-mini的增益为3.42%)。

🛎️

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值