人大:LLM深度研究框架WebThinker

在这里插入图片描述

📖标题:WebThinker: Empowering Large Reasoning Models with Deep Research Capability
🌐来源:arXiv, 2504.21776

🌟摘要

🔸大型推理模型(LRM),如OpenAI-o1和DeepSeek-R1,展示了令人印象深刻的长期推理能力。然而,他们对静态内部知识的依赖限制了他们在复杂、知识密集型任务上的表现,并阻碍了他们编写需要综合各种网络信息的综合研究报告的能力。
🔸为了解决这个问题,我们提出了WebThinker,这是一种深度研究代理,使LRM能够在推理过程中自主搜索网络、浏览网页和起草研究报告。WebThinker集成了Deep Web Explorer模块,使LRM在遇到知识缺口时能够动态搜索、导航和提取网络信息。它还采用了自主思考搜索和草稿策略,使模型能够实时无缝地交织推理、信息收集和报告编写。为了进一步提高研究工具的利用率,我们通过迭代在线直接偏好优化(DPO)引入了一种基于RL的训练策略。
🔸对复杂推理基准(GPQA、GAIA、WebWalkerQA、HLE)和科学报告生成任务(Glaive)的广泛实验表明,WebThinker明显优于现有方法和强大的专有系统。我们的方法增强了LRM在复杂场景中的可靠性和适用性,为更强大、更通用的深度研究系统铺平了道路。该代码可在以下网址获得https://github.com/RUC-NLPIR/WebThinker.

🛎️文章简介

🔸研究问题:大型推理模型在复杂信息检索和科学报告生成中的能力不足。
🔸主要贡献:论文提出了WebThinker框架,增强了大型推理模型的深度研究能力,使其能够自主进行网络探索和报告生成。

📝重点思路

🔸WebThinker框架包括两个主要模式:问题解决模式和报告生成模式,分别用于处理复杂推理任务和生成综合报告。
🔸在问题解决模式中,模型能够调用深网探索工具,进行动态搜索和信息提取。
🔸在报告生成模式中,模型通过自主思考、搜索和写作的方式,利用专业写作工具生成全面的研究报告。
🔸WebThinker还结合了强化学习策略,以优化模型对研究工具的使用。

🔎分析总结

🔸WebThinker通过实验验证了其在复杂推理任务和科学报告生成任务上的有效性,显示出在知识密集型任务中的优越表现。
🔸通过与现有方法的对比,WebThinker在生成报告的内容广度和深度上表现出明显的优势,尤其是在信息整合和多步骤推理方面。
🔸实验结果表明,WebThinker在处理复杂问题时能够更好地利用外部知识,显著提升了最终报告的质量和一致性。

💡个人观点

论文的核心在于将大型推理模型与深度网络探索相结合的框架,使其不仅能进行简单的信息检索,还能在动态环境中进行复杂的推理和报告生成。

🧩附录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值