代码随想录算法训练营第28天(回溯算法04 |● 93.复原IP地址 ● 78.子集 ● 90.子集II

文章详细介绍了回溯法在解决复原IP地址和子集问题中的解题思路,包括递归参数的使用、合法性检查方法、StringBuilder优化以及子集问题与组合问题的区别。同时提到了剪枝优化和代码实现细节。
摘要由CSDN通过智能技术生成

93.复原IP地址

本期本来是很有难度的,不过 大家做完 分割回文串 之后,本题就容易很多了
题目链接: 93.复原IP地址
文章讲解: 93.复原IP地址
视频讲解: 93.复原IP地址

解题思路

在这里插入图片描述

回溯三部曲

  1. 递归参数
    List result存放结果
    变量startIndex,记录下一层递归分割的起始位置。
    变量pointNum,记录添加逗点的数量
  2. 递归终止条件
    pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。然后验证一下第四段是否合法,如果合法就加入到结果集里。
  3. 单层搜索逻辑
  • 需要判断当前截取的子串[startIndex, i] 是否合法。如果合法就在字符串后面加上符号.表示已经分割。如果不合法就结束本层循环。
  • 递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。
  • 回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。

注意点

  1. 用StringBuilder进行操作性能更好
  2. 判断子串是否符合在0~255的函数
  3. 单层搜索逻辑在一个if else里面,与前面有所不同(这一点需复习加深理解
  4. 代码随想录上的剪枝优化代码还没看,复习的时候看
// 使用stringBuilder,故优化时间、空间复杂度,因为向字符串插入字符时无需复制整个字符串,
// 从而减少了操作的时间复杂度,也不用开新空间存subString,从而减少了空间复杂度。
class Solution {
    List<String> result = new ArrayList<>();

    public List<String> restoreIpAddresses(String s) {
        if(s.length() > 12) return result; // 算是剪枝
        StringBuilder sb = new StringBuilder(s);
        backTracking(sb, 0, 0);
        return result;
    }
    public void backTracking(StringBuilder s, int startIndex, int sumPoint){
        if(sumPoint == 3){ // 逗点数量为3时,分割结束
            // 判断第四段⼦字符串是否合法,如果合法就放进result中
            if(isValid(s, startIndex, s.length() - 1)){ 
                result.add(s.toString());
            }
            return;
        }
        for(int i = startIndex; i < s.length(); i++){
            if(isValid(s, startIndex, i)){
                s.insert(i + 1, '.');
                sumPoint++;
                backTracking(s, i+2, sumPoint);// 插⼊逗点之后下⼀个⼦串的起始位置为i+2
                sumPoint--;
                s.deleteCharAt(i + 1);
            }else{
                break;
            }
        }
    }

    //[start, end]
    private boolean isValid(StringBuilder s, int start, int end){
        if(start > end)
            return false;
        if(s.charAt(start) == '0' && start != end)
            return false;
        int num = 0;
        for(int i = start; i <= end; i++){
            int digit = s.charAt(i) - '0';
            num = num * 10 + digit;
            if(num > 255)
                return false;
        }
        return true;
    }
}

78.子集

子集问题,就是收集树形结构中,每一个节点的结果。 整体代码其实和 回溯模板都是差不多的。
题目链接: 78.子集
文章讲解: 78.子集
视频讲解: 78.子集

解题思路

在这里插入图片描述

标准模板题
其实可以不需要加终止条件,因为startIndex >= nums.length,本层for循环本来也结束了。

注意点

要清楚子集问题和组合问题、分割问题的的区别,子集是收集树形结构中树的所有节点的结果
而组合问题、分割问题是收集树形结构中叶子节点的结果
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树

遇到的难点

分析result.add(new ArrayList<>(path));这行代码应该放在哪

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    List<Integer> path = new  LinkedList<>();
    public List<List<Integer>> subsets(int[] nums) {
        backTracking(nums, 0);
        return result;
    }
    public void backTracking(int[] nums, int startIndex){
        result.add(new ArrayList<>(path));  //「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。
        if(startIndex >= nums.length) {
            return;
        }
        for(int i = startIndex; i < nums.length; i++){
            path.add(nums[i]);
            backTracking(nums, i + 1);
            path.removeLast();
        }
    }

90.子集II

大家之前做了40.组合总和II78.子集 ,本题就是这两道题目的结合,建议自己独立做一做,本题涉及的知识,之前都讲过,没有新内容。
题目链接: 90.子集II
文章讲解: 90.子集II
视频讲解: 90.子集II

解题思路

78.子集 的基础上,结合40.组合总和II中的去重逻辑,即可写出

注意点

一定要记得先排序
树层去重,树枝不去重
在这里插入图片描述

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    List<Integer> path = new  LinkedList<>();
    boolean used[];
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        Arrays.sort(nums);
        used = new boolean[nums.length];
        backTracking(nums, 0);
        return result;
    }
    public void backTracking(int[] nums, int startIndex){
        result.add(new ArrayList<>(path));  //「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。
        if(startIndex >= nums.length) {
            return;
        }
        for(int i = startIndex; i < nums.length; i++){
            if(i >0 && nums[i-1] == nums[i] && used[i-1] == false) continue; // 去重
            used[i] = true;
            path.add(nums[i]);
            backTracking(nums, i + 1);
            used[i] = false;
            path.removeLast();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值