- 博客(7)
- 收藏
- 关注
原创 正态(高斯)分布
正态分布参考资料:《深度学习》 3.9.3 高斯分布正态分布(normal distribution)高斯分布(Gaussian distribution):最常用的概率分布。概率密度函数:N(x;μ,σ)=12πσ2exp(−12σ2(x−μ)2)N(x;\mu ,\sigma)=\sqrt{\frac{1}{2\pi \sigma ^2}}exp(-\frac{1}{2\sigma ^2}(x-\mu )^2)N(x;μ,σ)=2πσ21exp(−2σ21(x−μ)2)其中,μ
2021-10-09 11:03:51 1619
原创 伯努利分布和多项分布
参考资料:《深度学习》3.9.1-3.9.2伯努利分布伯努利分布(Bernoulli distribution):是单个二值随机变量的分布。性质:P(x=1)=ϕP(x=0)=1−ϕp(x=n)=ϕn(1−ϕ)1−nE(x)=ϕVar(x)=ϕ(1−ϕ)P(x=1)=\phi\\P(x=0)=1-\phi\\p(x=n)=\phi ^n(1-\phi )^{1-n}\\E(x)=\phi\\Var(x)=\phi (1-\phi)P(x=1)=ϕP(x=0)=1−ϕp(x=n)=ϕ.
2021-10-09 09:40:45 780
原创 主成分分析
主成分分析主成分分析(principal components analysis,PCA):一个简单的机器学习算法,可以通过基础的线性代数知识推导。意义:假设在Rn空间中有m个点,为使用更少的内存储存这些点,对这些点进行有损压缩,即损失一些精度去存储这些点,同时希望损失的精度尽可能少。方法:编码这些点的一种方式是用低维表示。对于每一个点x∈Rn,会有一个编码向量c∈Rl。为了使l小于n,即使用了更 少的内存来存储原来的数据,希望找到一个编码函数:f(x)=cf(x)=cf(x)=c和一个解码
2021-10-06 16:23:57 185
原创 Moore-Penrose伪逆
Moore-Penrose伪逆参考材料:《深度学习》2.9 Moore-Penrose伪逆Moore-Penrose伪逆(Moore-Penrose pseudoinverse):A+=limα↘0(ATA+αI)−1ATA^+=lim_{\alpha \searrow 0} (A^TA+\alpha I)^{-1}A^TA+=limα↘0(ATA+αI)−1AT伪逆的实际算法A+=VD+UTA^+=VD^+U^TA+=VD+UT其中,U、D、V是A奇异值分解后得到的矩阵。D+是
2021-10-04 17:08:02 747
原创 奇异值分解
奇异值分解参考资料:《深度学习》2.8 奇异值分解奇异值分解(singular value decomposition,SVD):将矩阵分解成奇异向量和奇异值。每个实数矩阵都有奇异值分解,但不一定有特征分解。矩阵A的奇异值分解:图解:U和V是正交方阵,D是对角矩阵奇异值(singular value):上式D中对角线上的元素,非零奇异值是AA_t(A_t A)特征值的平方根。左奇异向量(left singular vector):上式中的U,AA_t的特征向量组成的正交矩阵,组成方式与
2021-10-04 15:55:36 425
原创 特征值分解
特征分解参考资料:《深度学习》2.7 特征分解特征分解(eigendecomposition):将矩阵分解成一组特征向量和特征值,是使用最广泛的矩阵分解之一。特征向量(eigenvector):对于方阵A来说,是指与A相乘后相当于对该向量进行缩放的非零向量v。Av=λv≠Av = \lambda v \neAv=λv=特征值(eigenvalue):上式中的 λ如果v是A的特征向量,那么任何缩放后的向量sv(s非零)也是A的特征向量。所以通常只考虑单位特征向量。不是每一个矩阵都可
2021-10-04 10:50:33 2025
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人