1. 查找接口成功率最优时间段
1.1. 题目描述
服务之间交换的接口成功率作为服务调用关键质量特性,某个时间段内的接口失败率使用一个数组表示,
数组中每个元素都是单位时间内失败率数值,数组中的数值为0~100的整数,
给定一个数值(minAverageLost)表示某个时间段内平均失败率容忍值,即平均失败率小于等于minAverageLost,
找出数组中最长时间段,如果未找到则直接返回NULL。
1.2. 输入描述
输入有两行内容,第一行为{minAverageLost},第二行为{数组},数组元素通过空格(” “)分隔,
minAverageLost及数组中元素取值范围为0~100的整数,数组元素的个数不会超过100个。
1.3. 输出描述
找出平均值小于等于minAverageLost的最长时间段,输出数组下标对,格式{beginIndex}-{endIndx}(下标从0开始),
如果同时存在多个最长时间段,则输出多个下标对且下标对之间使用空格(” “)拼接,多个下标对按下标从小到大排序。
1.4. 用例
输入
1
0 1 2 3 4
输出 0-2
说明
输入解释:minAverageLost=1,数组[0, 1, 2, 3, 4]
前3个元素的平均值为1,因此数组第一个至第三个数组下标,即0-2
输入
2
0 0 100 2 2 99 0 2
输出 0-1 3-4 6-7
说明
输入解释:minAverageLost=2,数组[0, 0, 100, 2, 2, 99, 0, 2]
通过计算小于等于2的最长时间段为:
数组下标为0-1即[0, 0],数组下标为3-4即[2, 2],数组下标为6-7即[0, 2],这三个部分都满足平均值小于等于2的要求,
因此输出0-1 3-4 6-7
1.5. 题目解析
最朴素的想法就是把所有时段都遍历一遍。但是这样平均值算了很多遍,有点不合适,所以用动态规划优化一下求和。
1.6. 代码
class Solution:
def __call__(self, min_average_lost: int, lost: List[int]):
pre_sum = [0]
for l in lost:
pre_sum.append(l + pre_sum[-1])
max_len = 0
ans = []
for i in range(len(lost)):
for j in range(i + 1, len(lost) + 1):
average_lost = (pre_sum[j] - pre_sum[i]) / (j - i)
if average_lost > min_average_lost:
continue
if (j - i) > max_len:
ans = [[i, j - 1]]
max_len = j - i
elif (j - i) == max_len:
ans.append([i, j - 1])
return ans
2. 查找众数及中位数
2.1. 题目描述
众数是指一组数据中出现次数量多的那个数,众数可以是多个。
中位数是指把一组数据从小到大排列,最中间的那个数,如果这组数据的个数是奇数,那最中间那个就是中位数,如果这组数据的个数为偶数,那就把中间的两个数之和除以2,所得的结果就是中位数。
查找整型数组中元素的众数并组成一个新的数组,求新数组的中位数。
2.2. 输入描述
输入一个一维整型数组,数组大小取值范围 0<N<1000,数组中每个元素取值范围 0<E<1000
2.3. 输出描述
输出众数组成的新数组的中位数
2.4. 用例
输入 10 11 21 19 21 17 21 16 21 18 15
输出 21
输入 2 1 5 4 3 3 9 2 7 4 6 2 15 4 2 4
输出 3
输入 5 1 5 3 5 2 5 5 7 6 7 3 7 11 7 55 7 9 98 9 17 9 15 9 9 1 39
输出 7
2.5.解题思路
遍历统计
2.6.代码
class Solution:
def __call__(self, nums: List[int]):
cnt, max_cnt = {}, -1
for num in nums:
cnt[num] = cnt.get(num, 0) + 1
max_cnt = max(max_cnt, cnt[num])
clean_nums = list(filter(lambda x: cnt[x] == max_cnt, cnt.keys()))
clean_nums.sort()
i = len(clean_nums) // 2
if len(clean_nums) % 2 != 0:
return clean_nums[i]
else:
return (clean_nums[i] + clean_nums[i - 1]) / 2