自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(854)
  • 资源 (7)
  • 收藏
  • 关注

原创 Vector-CAPL 自动化探索 专栏内容介绍

通过实际案例,您将了解如何利用CAPL脚本精准控制ECU的各种功能和状态,加速测试流程,提高测试效率。Vector-CAPL自动化探索专栏将带您领略自动化测试的魅力,助您在汽车电子领域中获得更多的成功和成就。🚀 欢迎来到 “Vector-CAPL 自动化探索” 专栏,我是陈书予,将带您踏上一段充满创新的旅程,深入探讨如何利用Vector-CAPL(vTESTStudio)实现自动化测试的无限可能。我们相信,通过共同的学习和探讨,您将收获更多,不断拓展自己的技能和视野。

2023-08-08 09:15:06 3553 39

原创 linkage mapper 专栏内容介绍

在数字时代,链接是信息的核心,链接地图成为了一个重要的工具,可以让我们更好地理解信息之间的联系和依赖关系。在这个专栏中,我们将探索Linkage Mapper这个工具,了解如何使用它来创建和分析链接地图,进而帮助我们更好地理解信息和数据之间的关系。我们将分享如何使用Linkage Mapper来处理和可视化数据,从而洞察信息背后的故事,同时还将分享实际案例和最佳实践,以及一些技巧和技术,帮助读者更好地探索数字世界中的链接。

2023-05-07 23:39:30 14882 58

原创 【三十天精通 Vue 3】 专栏内容介绍

在这个专栏中,我们将带你深入了解 Vue 3 的各个方面。首先,我们将带你了解 Vue 3 的新特性和改进,包括 Composition API、Provide/Use Case、Vuex 3 等。然后,我们将详细介绍 Vue 3 的组件化开发、路由、状态管理等方面的内容。以上是专栏的链接(持续更新)

2023-04-27 16:15:18 20813 47

原创 【ArcPy】Python脚本实现批量空间连接:将属性数据添加到矢量图层

编写一个函数来执行空间连接操作。使用工具可以将源图层的属性数据添加到目标图层中。"""使用空间连接将源图层的属性数据添加到目标图层。

2024-09-11 11:30:00 458

原创 【ArcPy】Python神器:批量提取栅格数据四至坐标的终极指南

我们需要编写一个函数来提取栅格数据的四至坐标。arcpy的Describe函数可以帮助我们获取栅格的描述信息,包括四至坐标。"""获取栅格数据的四至坐标。:param raster_path: 栅格数据文件路径:return: 四至坐标(top, bottom, left, right)"""# 提取四至坐标: 获取栅格数据的描述信息。: 返回栅格的范围对象,其中包含四至坐标。本指南详细介绍了如何使用Python和arcpy批量提取栅格数据的四至坐标。

2024-09-11 11:00:00 338

原创 【ArcPy】如何用Python批量计算影像光谱指数:全面提升遥感数据分析效率

NDVI是最常用的光谱指数之一,其计算公式为:其中,NIR为近红外波段,Red为红色波段。"""计算NDVI并保存为栅格文件:param red_band: 红色波段路径:param nir_band: 近红外波段路径:param output_ndvi: 输出NDVI栅格路径"""# 使用arcpy.ia.NDVI工具计算NDVI# 保存NDVI栅格print(f"NDVI计算完成,结果保存为:计算NDVI并保存为栅格文件:param red_band: 红色波段路径。

2024-09-11 07:15:00 146

原创 【ArcPy】 批量简化与合并大规模矢量数据的Python脚本:

本文详细介绍了如何使用Python脚本和arcpy库批量处理大规模矢量数据,包括数据简化和合并的流程。掌握这些技术可以显著提高数据处理效率,减少数据管理的复杂性,为后续的空间分析和决策提供可靠的数据支持。希望本指南能帮助你更高效地处理和管理你的GIS数据。如果你有任何问题或建议,请随时联系我!

2024-09-11 07:15:00 236

原创 【ArcPy】使用Python自动化处理大规模点云数据:从过滤到分类

点云数据通常以LAS(或LAZ)格式存储,其中包含了大量的三维坐标点。这些点可以包含附加的属性,如反射率、分类标签等。数据过滤:去除噪声点或无关点,保留有用数据。数据分类:根据点的属性对其进行分类,例如将地面点与非地面点分开。通过本文的介绍,你已经学会了如何使用arcpy自动化处理大规模点云数据,包括数据过滤和分类等步骤。这一技能可以显著提高你在处理点云数据时的效率,并帮助你在各种应用场景中更好地利用点云数据。未来,你可以继续探索更多arcpy的功能,如点云数据的空间分析和建模等。

2024-09-11 05:00:00 335

原创 【ArcPy】Python批量分析气象数据:从时间序列到空间分布

通过本文的介绍,你可以使用Python和arcpy库自动化地完成气象数据的批量分析,从时间序列分析到空间分布的可视化展示,进而生成详细的分析报告。掌握这些技能将帮助你提高数据处理效率,并为气候研究和环境监测提供有力支持。希望你能运用本文的方法,提升你的气象数据分析能力。

2024-09-10 18:15:00 222

原创 【ArcPy】用Python自动生成地理数据报告:从数据分析到图表生成

通过本文的介绍,你可以使用Python和arcpy库自动化地完成地理数据的分析、图表生成以及报告编写。掌握这些技能将帮助你提高数据处理效率,生成专业的地理数据报告。希望你能运用本文的方法,提升你的GIS数据分析能力。

2024-09-10 12:00:00 154

原创 【ArcPy】使用Python批量导出多个Shapefile至GeoJSON格式

通过本文,你已经学习了如何使用Python脚本批量将多个Shapefile文件转换为GeoJSON格式。该方法提高了数据处理的效率,使得数据可以更方便地在Web上展示和共享。掌握这些技能,将帮助你在GIS数据管理和应用中更加得心应手。在未来,你可以继续探索arcpy的更多功能,如数据转换、空间分析等,以进一步提升你的GIS数据处理能力。如果你有任何问题或需要进一步了解,请随时在评论区留言。🚀。

2024-09-10 11:30:00 250

原创 【ArcPy】如何用Python批量处理无人机影像数据:正射校正与镶嵌

正射校正是将倾斜影像转换为地理上精确的图像,使其符合实际地形。这通常涉及影像的几何校正,使影像的每个像素都对应于地球上的实际位置。影像配准:使用地面控制点(GCPs)将影像与实际地面坐标对齐。几何校正:通过使用数字高程模型(DEM)来纠正影像中的几何畸变。通过本文的介绍,你已经学会了如何使用Python和arcpy批量处理无人机影像数据,包括正射校正和镶嵌处理。这些技能能够显著提高你在地理数据处理中的效率,并帮助你生成高质量的地理影像产品。未来,你可以继续探索arcpy。

2024-09-10 09:30:00 571

原创 【ArcPy】Python神器:轻松整合多个文件夹内的分幅数据,打造统一的GIS数据仓库

我们将编写一个函数,负责从多个文件夹中提取分幅数据,并将它们复制到目标文件夹中。"""整合多个文件夹中的分幅数据到一个目标文件夹中。:param input_folders: 输入文件夹列表:param output_folder: 输出文件夹路径"""# 获取数据集的名称并生成输出路径# 复制数据集到目标文件夹print(f"已复制整合多个文件夹中的分幅数据到一个目标文件夹中。:param input_folders: 输入文件夹列表。

2024-09-10 08:30:00 117

原创 【ArcPy】Python批量裁剪大规模地理数据:高效处理与自动化技巧

通过本文的详细介绍,你已经学习了如何使用Python和ArcPy脚本批量裁剪地理数据。这一技能可以显著提高数据处理的效率,特别是在处理大规模数据集时。掌握这些技术后,你可以进一步探索Python和ArcPy在GIS中的更多应用,如数据分析、空间建模和自动化任务等。未来,你可以继续学习如何在Python中使用其他GIS库(如GDAL、Fiona)来扩展你的数据处理能力。此外,掌握如何在Python中结合机器学习算法进行空间数据分析,将为你的GIS应用带来更多可能性。

2024-09-09 10:30:00 580

原创 【ArcPy】 如何用Python自动化提取道路网络的中心线

在许多GIS应用中,精确的道路中心线数据至关重要。例如,在交通规划、导航系统以及物流管理中,中心线数据被广泛使用。通过自动化处理,我们可以从现有的道路网络数据中高效提取中心线,减少手动操作的时间,并保证数据的一致性。通过本文的介绍,你已经学会了如何使用Python和arcpy自动化提取道路网络的中心线。从环境配置、数据准备、中心线提取到最终输出与验证,每一步都涵盖了详细的实现方法和代码示例。自动化中心线提取工具不仅提高了处理效率,还大大减少了手动操作中的错误,适用于各种GIS项目和应用场景。

2024-09-09 08:30:00 544

原创 【ArcPy】用Python批量处理大规模地理数据的几何校正

在许多GIS应用中,尤其是在大规模地理数据处理时,几何校正(Geometric Correction)是一个至关重要的任务。它确保了不同来源的地理数据能够正确地对齐和匹配,从而为后续分析提供准确的基础。几何校正的常见应用包括遥感影像的地理配准、矢量数据的投影转换等。几何校正通常包括坐标转换、重采样等步骤。以下示例展示了如何使用arcpy的工具进行几何校正。"""实施几何校正:param input_layer: 输入待校正数据层。

2024-09-09 08:15:00 472

原创 【ArcPy】Python神器:批量转换Shapefile、MDB与GDB格式的终极指南

通过本文介绍的Python脚本,你可以高效地批量转换Shapefile、MDB和GDB格式的数据。利用arcpy,你可以自动化这些任务,节省时间和精力,提升工作效率。希望这些示例和技巧对你的GIS数据处理工作有所帮助。如果有任何问题或需要进一步的帮助,请随时在评论区留言!🚀。

2024-09-08 13:30:00 392

原创 【ArcPy】Python批量生成XY坐标点:轻松创建Shapefile点数据文件的终极指南

本文详细介绍了如何使用Python和ArcPy脚本批量生成XY坐标点,并创建Shapefile点数据文件。我们从环境配置、数据准备开始,经过脚本编写和调试,最终实现了高效的点数据处理。通过进阶应用和常见问题的解决方案,你可以更灵活地应对不同的需求和挑战。希望这篇指南能够帮助你掌握批量处理点数据的技巧,提高工作效率。如果你有任何问题或想要了解更多内容,请在评论区留言,或继续关注我们的博客!

2024-09-08 12:15:00 211

原创 【ArcPy】Python脚本实现空间数据的自动化压缩与优化

包含几何信息和属性数据的文件格式。:Esri的数据库格式,用于存储空间数据。Raster数据:包括TIFF、JPEG、GRID等格式,用于存储栅格数据。通过本文的介绍,你已经学会了如何使用Python和arcpy实现空间数据的自动化压缩与优化。这些技巧将帮助你更高效地管理空间数据,节省存储空间,并提高数据处理和访问的效率。未来,你可以继续探索arcpy的其他功能,如空间数据分析、数据转换和自动化制图等。掌握这些技能,将使你在GIS领域的工作更加游刃有余。

2024-09-08 08:30:00 142

原创 【ArcPy】如何批量为多个矢量图层添加字段:ArcGIS Python脚本指南

通过本文的介绍,你已经掌握了如何使用Python和arcpy批量为多个矢量图层添加字段。这一技能在处理大量数据时尤其重要,可以显著提高你的工作效率。在未来的工作中,你可以继续探索arcpy的其他功能,如数据转换、空间分析等,进一步提升你的GIS处理能力。希望这篇博客能帮助你更好地理解和应用arcpy。如果你有任何问题或希望了解更多内容,欢迎在评论区留言!🚀。

2024-09-07 08:30:00 387

原创 【ArcPy】揭示数据的秘密:用ArcGIS Python获取字段的唯一值

通过本文的介绍,你已经学会了如何使用ArcGIS Python(arcpy模块)来获取字段的唯一值。这一技能可以帮助你更好地理解和分析GIS数据中的属性信息,提高数据处理的效率。未来,你可以继续探索arcpy的更多功能,如数据清洗、数据转换和空间分析等。掌握这些技能,将使你在GIS数据处理领域更具竞争力。希望这篇博客能帮助你更好地理解和应用ArcGIS Python获取字段的唯一值。如果你有任何问题或希望了解更多内容,欢迎在评论区留言!🚀。

2024-09-07 08:30:00 271

原创 【ArcPy】用Python生成高精度等高线:从DEM数据到矢量图层

DEM(数字高程模型)数据表示地表的高程信息,通常以栅格格式存储。每个像素值代表地表的高程。生成等高线需要基于这些高程值进行插值和矢量化操作。栅格数据:包括高程值,每个像素表示一个地表点的高程。空间参考:DEM数据通常有一个坐标系统(如UTM、WGS84)来定义地理位置。通过本文的介绍,你已经学会了如何使用Python和arcpy模块从DEM数据生成高精度等高线,并将其转换为矢量图层。掌握这一技能可以帮助你在地形分析中更好地理解地表的高程变化,提升GIS数据处理能力。未来,你可以进一步探索arcpy。

2024-09-06 16:00:00 284

原创 【ArcPy】揭秘线段端点:用 Python 提取所有线段的起点与终点坐标

通过本文的介绍,你已经学会了如何使用ArcGIS Python(arcpy模块)提取线段的起点与终点坐标。这一技能对于空间分析、数据清洗和网络分析等任务非常有用。未来,你可以继续探索arcpy的更多功能,如空间分析、几何处理和数据可视化等。掌握这些技能,将使你在GIS数据处理领域更加游刃有余。希望这篇博客能帮助你更好地理解和应用ArcGIS Python来提取线段的端点坐标。如果你有任何问题或希望了解更多内容,欢迎在评论区留言!🚀。

2024-09-06 08:30:00 543

原创 【ArcPy】简化字段管理:用arcpy批量更改字段名称与类型的终极教程

通过本文的介绍,你已经掌握了如何使用ArcGIS Python(arcpy模块)批量更改字段名称和类型。这一技能对于大规模数据处理和优化数据结构非常有用。未来,你可以继续探索arcpy的更多功能,如空间数据分析、字段计算和数据管理等。掌握这些技能,将使你在GIS数据处理领域更加游刃有余。希望这篇博客能帮助你高效管理和优化你的GIS数据。如果你有任何问题或希望了解更多内容,欢迎在评论区留言!🚀。

2024-09-06 08:30:00 432

原创 【ArcPy】提升ArcGIS效率:如何将Python脚本无缝集成到ArcToolbox

为了提升用户体验,你可以为工具添加自定义界面。ArcGIS Pro支持使用Python工具创建自定义对话框,提供更友好的用户交互界面。

2024-09-05 11:20:50 1062

原创 【ArcPy】 Python批量提取多张遥感影像的NDVI值

在处理遥感影像时,理解影像的波段结构和坐标系统非常重要。一般来说,遥感影像会包含多个波段,每个波段代表特定的光谱范围。Red波段:通常对应于第三波段(在Landsat影像中为Band 3)。NIR波段:通常对应于第四波段(在Landsat影像中为Band 4)。通过本文的介绍,你已经学会了如何使用Python批量提取多张遥感影像的NDVI值。这一技能在遥感影像分析中具有广泛的应用前景,可以帮助你更高效地分析植被覆盖情况。

2024-09-05 09:02:24 380

原创 【ArcPy】 Python脚本实现大规模DEM数据的自动化下载与拼接

在本篇博客中,我们不仅探讨了如何使用Python脚本实现大规模DEM数据的自动化下载与拼接,还讨论了在实际应用中可能遇到的问题以及相应的解决方案。通过掌握这些技术和技巧,你可以有效地处理大量的地理空间数据,提升工作效率并减少手动操作的繁琐。希望本文能为你的GIS数据处理工作提供帮助,也期待你在实践中发现更多的技巧和方法。🚀 让我们一起在GIS的世界中不断探索与创新!

2024-09-05 09:00:23 393

原创 【ArcPy】 如何使用Python自动化提取Shapefile中的特定属性数据

在操作Shapefile之前,了解其基本结构是非常重要的。.shp:存储几何信息(点、线、多边形等)。.shx:存储索引信息,加快几何数据的访问速度。.dbf:存储属性数据,类似于表格形式。属性数据包含与几何对象相关的信息,如名称、高度、面积等。我们将重点关注.dbf文件中存储的属性数据。通过本文的介绍,你已经学会了如何使用arcpy自动化提取Shapefile中的特定属性数据。这一技能可以显著提高你在GIS数据处理中的效率,帮助你轻松应对大量数据的处理需求。

2024-09-05 08:00:00 297

原创 【ArcPy】 如何用Python批量转换坐标系:从WGS84到UTM

arcpy是ESRI公司开发的ArcGIS平台中的Python库,提供了丰富的地理处理工具和函数,支持从数据管理、空间分析到地图制图等多种功能。在本次教程中,我们将使用arcpy来实现坐标系的批量转换。# 获取转换后Shapefile的空间参考print(f"

2024-09-05 08:00:00 307

原创 【ArcPy】Python批量将多个文件夹下的影像数据镶嵌至新栅格

通过本文的介绍,你已经学会了如何使用arcpy批量将多个文件夹中的影像数据镶嵌至一个新的栅格文件。这一技能可以显著提高你在遥感数据处理中的效率,帮助你轻松应对大规模影像数据的处理需求。未来,你可以继续探索arcpy的更多功能,如空间分析、数据转换和自动化制图等。掌握这些技能,将使你在GIS领域的工作更加游刃有余。希望这篇博客能帮助你更好地理解和应用arcpy来处理影像数据。如果你有任何问题或希望了解更多内容,欢迎在评论区留言!🚀。

2024-09-04 16:55:46 694

原创 【Python玩转GIS数据】专栏内容介绍

Python 🐍:Python是一种功能强大且易学的编程语言,以其简洁的语法和丰富的库资源而闻名。在GIS领域,Python被广泛用于自动化数据处理、空间分析和生成地图,是不可或缺的工具。ArcGIS 🗺️:ArcGIS是由Esri开发的全球领先的GIS软件套件,广泛应用于数据收集、管理、分析和分享。它为用户提供了全面的工具集,支持从简单地图制作到复杂空间分析的所有需求。Arcpy 🧰:Arcpy是Esri为ArcGIS用户提供的Python库,集成了ArcGIS的核心功能。

2024-09-04 16:42:54 873

原创 华为OD机试B卷Java实现【过滤组合字符串】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 每个数字关联多个字母,关联关系如下:第一行输入为一串数字字符串,数字字符串中的数字不允许重复,数字字符串的长度大于0,小于等于5;第二行输入是屏蔽字符串,屏蔽字符串的长度一定小于数字字符串的长度,屏蔽字符串中字符不会重复;输出可能的字符串组合注:字符串之间使用逗号隔开,最后一个字符串后携带逗号六、效果展示1、输入89wywz,xy,

2023-12-04 09:51:52 1767 1

原创 华为OD机试B卷Java实现【ABR 车路协同场景】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 数轴×有两个点的序列A={A1,A2,…Am}和B={B1,B2,.Bn},A和Bj均为正整数,A、B已经从小到大排好序,A、B均肯定不为空,给定一个距离R(正整数),列出同时满足如下条件的所有(Ai,Bj)数对车路协同场景,一条路上发生了有很多事件(A),要通过很多路测设备(B)广播给路上的车,需要给每个事件找到一个合适的路测设备去发送广播

2023-12-04 09:50:40 830

原创 华为OD机试B卷Java实现【执行时长 - 回溯】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1秒内新增的任务个数且每秒都有新增任务。假设GPU最多一次执行n个任务,一次执行耗时1秒,在保证GPU不空闲情况下,最少需要多长时间执行完成。执行完所有任务最少需要多少秒。题目描述很不清晰,感觉语文没学好。反复读几遍,懂它啥意思了。这不就简单了。4

2023-12-02 11:39:40 1231

原创 华为OD机试B卷Java实现【华为OD机试 - 最少数量线段覆盖 - 二叉树】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 给定坐标轴上的一组线段,线段的起点和终点均为整数并且长度不小于1,请你从中找到最少数量的线段,这些线段可以覆盖住所有线段。第一行输入为所有线段的数量,不超过10000,后面每行表示一条线段,格式为"x,y",x和y分别表示起点和终点,取值范围是[-105,105]。最少线段数量,为正整数。五、效果展示1、输入31,73,68,92

2023-12-02 11:38:46 526

原创 华为OD机试B卷Java实现【求满足条件的最长子串的长度- 双指针】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 给定一个字符串,只包含字母和数字,按要求找出字符串中的最长(连续)子串的长度,字符串本身是其最长的子串,子串要求:1、 只包含1个字母(a-z, A-Z),其余必须是数字;2、 字母可以在子串中的任意位置;如果找不到满足要求的子串,如全是字母或全是数字,则返回-1。字符串(只包含字母和数字)。子串的长度。题读百遍,其义自见。题意:也就是

2023-12-01 14:01:17 517

原创 华为OD机试B卷Java实现【求字符串中所有整数的最小和】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 输入字符串s,输出s中包含所有整数的最小和。说明:字符串s,只包含 a-z A-Z ± ;合法的整数包括包含数字的字符串。所有整数的最小和。题读百遍,其义自见。比如:也就是说,如果是整数,直接相加,如果是负数,拼接成最小负数,再相加即可。简单。解题思路:核心思想:如果是整数,直接相加,如果是负数,拼接成最小负数,再相加即可。六、效果展示

2023-12-01 14:01:09 1108

原创 华为OD机试B卷Java实现【数字序列比大小】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) A,B两个人万一个数字比大小的游戏,在游戏前,两个人会拿到相同长度的两个数字序列,两个数字序列不相同且其中的数字是随机的。A,B各自从数字序列中挑选出一个数字进行大小比较,赢的人得1分,输的人扣1分,相等则各自的分数不变,用过的数字需要丢弃。求A可能赢B的最大分数。输入数据的第一个数字表示数字序列的长度N,后面紧跟着两个长度为N的数字序列。A

2023-11-30 11:18:05 506

原创 华为OD机试B卷Java实现【硬件产品销售方案 - 回溯】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 某公司目前推出了AI开发者套件、AI加速卡、AI加速模块、AI服务器、智能边缘多种硬件产品,每种产品包含若干个型号。现某合作厂商要采购金额为amount元的硬件产品搭建自己的AI基座。假设当前库存有N种产品,每种产品的库存量充足,给定每种产品的价格,记为price(不存在价格相同的产品型号)。请为合作厂商列出所有可能的产品组合。输入包含采购金

2023-11-30 11:18:00 956

原创 华为OD机试B卷Java实现【按索引范围翻转文章片段】一文详解

✅创作者:陈书予🎉个人主页:陈书予的个人主页🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区🌟专栏地址: Java华为OD机试真题(2022&2023) 输入一个英文文章片段,翻转指定区间的单词顺序,标点符号和普通字母一样处理。例如输入字符串”I am a developer. “,区间[0,3],则输出”developer. a am I”。使用换行隔开三个参数第一个参数为英文文章内容即英文字符串第二个参数为翻转起始单词下标(下标从0开始)第三个参数为结束单词下标翻转后的英文文章片段所

2023-11-29 09:28:08 502

基于YOLOv5的光照和旋转不变实时车轮检测器

在最初基于卷积神经网络 (CNN) 架构开发时,在计算机视觉中创建对象检测器会遇到一些常见的挑战。在创建需要适应由各种相机方向、光照条件和环境变化捕获的图像的模型时,这些挑战更加明显。覆盖所有这些条件的初始训练样本的可用性可能是一个巨大的挑战,需要时间和成本负担。虽然在创建任何类型的对象检测时都可能存在问题,但某些类型不太常见,并且没有公开存在的预标记图像数据集。有时,对于罕见的对象类型,公共数据集既不可靠也不全面。车轮是被选中用来演示创建基于 YOLOv5 架构的光照和旋转不变实时检测器的方法的示例之一。目的是提供一种简单的方法,可以用作开发其他类型的实时对象检测器的参考。

2023-06-19

使用 YOLOv5 对 MRI 胼胝体进行可解释的同时定位和对非典型帕金森病的分类

结构 MRI (S-MRI) 是最通用的成像方式之一,它在过去几十年彻底改变了大脑的解剖学研究。胼胝体 (CC) 是主要的白质纤维束,能够进行各种半球间通讯。因此,CC 的细微变化可能与各种神经系统疾病有关。目前的工作提出了基于 YOLOv5 的 CC 检测框架将非典型帕金森病 (PD) 与健康对照 (HC) 区分开来的潜力。通过 3 轮保留验证,使用所提出的方法在由 20 名健康受试者和 20 例 APD 病例组成的专有数据集上获得了 92% 的平均分类准确度,比 SOTA 方法(CC 形态测量和视觉)提高了 5%纹理分析)使用相同的数据集。随后,为了结合 YOLO 预测的可解释性,生成了基于 Eigen CAM 的热图,用于识别导致分类的 CC 中最重要的子区域。Eigen CAM 的结果显示 CC 中体是 APD 和 HC 分类中最容易区分的子区域,这符合 SOTA 方法和当前医学上的普遍理解

2023-06-19

针对 Yolov5 的交通和道路标志检测的对抗性攻击

本文实施并研究了对 YOLOv5 目标检测算法的流行对抗攻击。本文探讨了 YOLOv5 在交通和道路标志检测的背景下对对抗性攻击的脆弱性。本文研究了不同类型攻击的影响,包括有限内存 Broyden Fletcher Goldfarb Shanno (L-BFGS)、快速梯度符号法 (FGSM) 攻击、Carlini 和 Wagner (C&W) 攻击、基本迭代法 (BIM) ) 攻击、投影梯度下降 (PGD) 攻击、单像素攻击和通用对抗扰动攻击 YOLOv5 在检测交通和路标时的准确性。结果表明,YOLOv5 容易受到这些攻击,误分类率随着扰动幅度的增加而增加。我们还使用显着图来解释结果。本文的研究结果对交通和运输系统中使用的物体检测算法的安全性和可靠性具有重要意义,强调需要更稳健和安全的模型以确保其在实际应用中的有效性。

2023-06-19

DeepSeaNet:使用 EfficientDet 改进水下物体检测

海洋动物和深水下物体难以识别和监测水生生物的安全。当水是含有颗粒和杂质的盐水时,挑战就越来越大。在这种自然的对抗环境中,像 CNN 这样的传统方法开始失败并且计算成本很高。该项目涉及在现有带注释的水下数据集(称为 Brackish 数据集)上实施和评估各种对象检测模型,包括 EfficientDet、YOLOv5、YOLOv8 和 Detectron2。该数据集包含在能见度有限的 Limfjorden 水中捕获的鱼类、螃蟹、海星和其他水生动物的注释图像序列。该研究项目的目的是研究新模型在同一数据集上的效率,并根据准确性和推理时间将它们与以前的结果进行对比。首先,我比较了 YOLOv3 (31.10% mean Average Precision (mAP))、YOLOv4 (83.72% mAP)、YOLOv5 (97.6%)、YOLOv8 (98.20%)、EfficientDet (98.56% mAP) 和 Detectron2 (95.20% mAP) 的结果) 在同一数据集上。其次,我提供了一种改进的 BiSkFPN 机制(带跳跃连接的 BiFPN 颈部)

2023-06-19

layerJS-最新版下载

layerJS.org是一个开源的 Javascript UI/UX 库,可为 Web 应用程序和网站提供直观、视觉强烈、类似于移动应用程序的体验。 UX 模式,如菜单、滑块、图层和灯箱、视差效果、页面滑动、缩放效果等,实际上只是交互式动画图层。layerJS 提供了一个简单的通用概念来在纯 HTML 中创建此类模式:Stage-Frame 概念。框架是包含您的内容的容器,例如子页面、屏幕、菜单窗格、灯箱、卡片、幻灯片等。舞台是框架内容动态适应的视口。根 Stage 通常是浏览器窗口,其 Frames 代表子页面或应用程序屏幕。可以使用滑动、淡入淡出等动画过渡在舞台内交换帧。阶段和框架可以嵌套,因此在应用程序屏幕(框架)中可以存在包含一组幻灯片(框架)的滑块(阶段)。舞台可以有一个或多个具有不同帧的重叠层, layerJS 的概念类似于材料设计的原则。特别是,layerJS 的框架是材料设计中的纸张/表面。阶段是定义表面布局和主要运动的便捷方式。使用阶段,用户界面的动画过渡可以简单地定义为下一步应该在哪个阶段显示哪个帧。

2023-05-24

jdcookie.js下载最新版

明 其中 jd_bean_sign.js 可N个京东账号,Node.js专用,核心脚本是JD_DailyBonus.js, IOS软件用户请使用NobyDa的 JD_DailyBonus.js 以字母排序。 活动时长 名称 脚本 长期 京豆变动通知 jd_bean_change.js 长期 领京豆额外奖励&抢京豆 jd_bean_home.js 长期 京东多合一签到 jd_bean_sign.js 长期 东东超市兑换奖品 jd_blueCoin.js 长期 口袋书店 jd_bookshop.js 长期 京东汽车赛点兑换京豆 jd_car_exchange.js 长期 签到领现金 jd_cash.js 长期 京东汽车签到 jd_car.js 长期 摇京豆 jd_club_lottery.js 长期 疯狂的JOY挂机 jd_crazy_joy_coin.js 长期 疯狂的JOY日常任务 jd_crazy_joy.js 长期 京东金融-天天提鹅 jd_daily_egg.js 长期 京喜工厂 jd_dreamFactory.js 长期 东东农场 jd_fruit.js 长期 宠汪汪 jd_j

2023-05-24

使用 YOLOv8 进行基于机器视觉的作物负荷估计

近年来,水果作物生产中劳动力短缺已成为一个重大挑战。因此,机械化和自动化机器已经成为劳动密集型果园作业(如收获、修剪、和变薄。在水果作物生产中使用机械化和自动化机械已成为解决这一问题的一种很有前途的方法劳动力短缺,因为这些技术可以完成劳动密集型任务,如收获、修剪和修剪。之一农业机器人完成这些任务的关键方面是它们能够识别树冠部分,如树干和树干分支和估计其几何和拓扑参数,如分支直径,分支长度和分支角度。有了对目标作物负荷的估计,研究人员就可以在自动修剪和修剪的平台上工作更有效的决策,以实现最佳作物产量。在这项研究中,我们提出了一个机器视觉系统来估计这些冠层苹果园的参数。然后使用这些参数来估计单个分支的最佳水果数量 可以在商业果园里结出果实,这为机器人修剪、修剪花朵和修剪果实提供了基础 可以达到预期的果实产量和品质。利用RGB-D传感器收集的颜色和深度信息(微软 Azure Kinect DK是一种基于yolov8的实例分割技术,用于识别苹果树的树干和树枝 在休眠季节。然后,我们应用主成分分析技术来估计分支直径(用于计算) 肢体横截面积(LCSA)和方向。

2023-05-17

YOLO-Drone:高空视角空中实时检测致密小物体

配备遥感目标探测技术的无人机,迅速获得了广泛的应用和已成为该领域的主要研究热点之一计算机视觉。虽然无人机遥感系统有能够探测各种物体,小尺度物体即可由于物体大小等因素,很难进行可靠的检测,图像退化和实时限制。为了解决这些问题 提出了一种实时目标检测算法(YOLO-Drone)提出并应用于两种新型无人机平台以及一种特定光源(硅基黄金LED)。YOLO-Drone提出了几个新奇之处:1)包括一个新的骨干Darknet59;2)一种新的复杂特征聚合模块MSPP-FPN它包含了一个空间金字塔池和三个空间空间金字塔池模块;3)和泛化的使用交集/并(GIoU)作为损失函数。评估性能,两个基准数据集,UAVDT和VisDrone,以及夜间在硅基金色led下获得的自制数据集。实验结果表明:在UAVDT和VisDrone中,提出的YOLO-Drone优于最先进的(SOTA)目标检测方法mAP分别提高10.13%和8.59%。关于UAVDT, YOLO-Drone表现出两者的高实时推理速度为53 FPS,最大mAP为34.04%。值得注意的是,YOLO-Drone在以

2023-05-16

JDK 开发工具包 17.0.7

JDK 17.0.7 的主要特点 支持 Java 应用程序的跨平台性:JDK 17.0.7 支持 Windows、Linux 和 macOS 等操作系统,使开发人员能够在同一平台上开发并运行 Java 应用程序。 改进的性能和稳定性:JDK 17.0.7 包括许多性能和稳定性改进,例如改进的垃圾收集器、更快的启动时间和更好的多核支持等。 新增和增强的 API:JDK 17.0.7 包含了许多新的和增强的 Java API,例如 Java 媒体框架、Java 加密框架、Java 容器平台等,为开发人员提供了更多的工具和功能。 更好的安全性:JDK 17.0.7 包括许多安全改进,例如增强的访问控制、新的安全提示和改进的安全审计等,有助于提高应用程序的安全性。 JDK 17的主要特点 支持 Java 应用程序的跨平台性:JDK 17.0.7 支持 Windows、Linux 和 macOS 等操作系统,使开发人员能够在同一平台上开发并运行 Java 应用程序。 改进的性能和稳定性:JDK 17.0.7 包括许多性能和稳定性改进,例如改进的垃圾收集器、更快的启动时间和更好多核支持等

2023-05-16

Linkage Mapper工具包是一款基于GIS的连接分析软件,可以帮助用户实现空间数据的连接分析以及结果可视化

Linkage Mapper 工具包是一款基于地理信息系统 (GIS) 的连接分析软件,旨在帮助用户实现空间数据的连接分析,并提供结果可视化。该工具包提供了多种连接分析方法,包括拓扑连接、空间连接、相似性连接等,可以适用于不同类型的空间数据。 具体来说,Linkage Mapper 工具包可以通过以下步骤帮助用户进行空间数据的连接分析: 准备空间数据:将不同类型的空间数据准备好,包括地图数据、地形数据、卫星图像数据等。 选择连接分析方法:选择适合用户数据类型和分析目的的连接分析方法,如拓扑连接、空间连接、相似性连接等。 分析空间连接结果:使用 Linkage Mapper 工具包分析连接结果,并生成可视化结果,如连接图、拓扑图、地形图等。 解读结果:用户可以根据需要解读分析结果,了解空间连接的规律和特征,如连接类型、连接率、连通性等。 Linkage Mapper 工具包的优点是可以帮助用户快速分析空间数据的连接关系,并提供可视化结果,从而帮助用户更好地理解空间数据的连接规律和特征。同时,该工具包也支持对连接结果进行进一步分析和优化,如选择最佳连接路径、计算连接密度等。

2023-05-16

mongodb-win32-x86-64-2012plus-4.2.0

MongoDB是一个基于分布式文件存储 [1] 的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。

2023-03-02

Windows下MySQL 解压版安装教程

Windows下MySQL 解压版安装教程 这篇文章是大一的时候写的了,哪个时候的知识实在是太少,才用了这个吃力不讨好的方法。建议直接前往 MySQL 官网下载安装包安装或使用 Wamp 等工具,下载慢的话也可以走迅雷。 这篇文章是大一的时候写的了,哪个时候的知识实在是太少,才用了这个吃力不讨好的方法。建议直接前往 MySQL 官网下载安装包安装或使用 Wamp 等工具,下载慢的话也可以走迅雷。 这篇文章是大一的时候写的了,哪个时候的知识实在是太少,才用了这个吃力不讨好的方法。建议直接前往 MySQL 官网下载安装包安装或使用 Wamp 等工具,下载慢的话也可以走迅雷。 这篇文章是大一的时候写的了,哪个时候的知识实在是太少,才用了这个吃力不讨好的方法。建议直接前往 MySQL 官网下载安装包安装或使用 Wamp 等工具,下载慢的话也可以走迅雷。 这篇文章是大一的时候写的了,哪个时候的知识实在是太少,才用了这个吃力不讨好的方法。建议直接前往 MySQL 官网下载安装包安装或使用 Wamp 等工具,下载慢的话也可以走迅雷。

2023-03-02

开源数据库 PostgreSQL 的图形管理工具常用的有Navicat,除此之外,我们还有PostgreSQL本身自带的pgAd

pgAdmin 4 是 Postgres 领先的开源管理工具。pgAdmin 旨在通过单个图形界面监控和管理多个本地和远程 PostgreSQL 和 EDB Advanced Server 数据库服务器,该界面允许轻松创建和管理数据库对象,以及用于管理数据库的许多其他工具。 pgAdmin 可以以两种模式安装:桌面模式和服务器模式。桌面模式作为独立应用程序安装,由同一操作系统用户使用,而服务器模式可以通过网络访问,允许多个用户使用。 两种模式实现都遵循 3 层架构方法。

2023-03-02

正则表达式实现字符的模糊匹配功能示例.docx

正则表达式实现字符的模糊匹配功能示例

2021-10-15

jdk1.7 官方正式版64位下载

jdk1.7 64位 官方正式版下载。 JDK详细介绍 JDK(Java Development Kit) 是 Java 语言的软件开发工具包(SDK)。 SE(J2SE),standard edition,标准版,是我们通常用的一个版本,从JDK 5.0开始,改名为Java SE。 EE(J2EE),enterprise edition,企业版,使用这种JDK开发J2EE应用程序,从JDK 5.0开始,改名为Java EE。 ME(J2ME),micro edition,主要用于移动设备、嵌入式设备上的java应用程序,从JDK 5.0开始,改名为Java ME。 没有JDK的话,无法编译Java程序,如果想只运行Java程序,要确保已安装相应的JRE。

2021-10-14

Postman-win64-8.2.1-Setup.exe

Postman-win64-8.2.1-Setup

2021-10-14

系统软硬件物理部署方案.doc

系统软硬件物理部署方案.

2021-10-14

基础数据库信息资源规划服务.doc

基础数据库信息资源规划服务.doc

2021-09-27

Geoserver maven 依赖

Geoserver maven 依赖 java

2021-09-23

geoserver-main.zip

开源Geoserver java Api 源码

2021-09-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除