2022.3.7 论文速览

2022.3.7 论文速览
接下来的论文解读可能穿插更多的英文表述,懒,多多谅解。

CAFE: Learning to Condense Dataset by Aligning Features(CVPR2022)

Method

本文主要目的是寻找一个替代数据集来减少模型的计算开销,具体做法是构建了一个合成数据集,构建方法如下:
在这里插入图片描述
Layer-wise feature alignment: minimize the difference of layer-wise feature maps of real and synthetic images using Mean Square Error (MSE).

To enable learning discriminative synthetic images, we use the feature centers of synthetic images of each class to classify the real images by computing their inner-product and cross-entropy loss.

Experiments

核心子集精度
在这里插入图片描述
可视化结果
在这里插入图片描述

HCSC: Hierarchical Contrastive Selective Coding(CVPR2022)

Method

现有的对比学习方法没有考虑到图片的分层特性
在这里插入图片描述

Experiments

框架结构:有一说一,这个分层的先验知识要求会不会太强了
在这里插入图片描述
部分实验结果:
在这里插入图片描述

BatchFormer: Learning to Explore Sample Relationships for Robust Representation Learning(CVPR2022)

Method

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值