问题描述
如下图所示,3 x 3 的格子中填写了一些整数。
+--*--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+
我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。
本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0。
输入格式
程序先读入两个整数 m n 用空格分割 (m,n<10)。
表示表格的宽度和高度。
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。
输出格式
输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。
样例输入1
3 3
10 1 52
20 30 1
1 2 3
样例输出1
3
样例输入2
4 3
1 1 1 1
1 30 80 2
1 1 1 100
样例输出2
10
思路
经典的搜索问题,分割的两块其中必有一块包含包含左上角,那么就从左上角开始搜索,如果能搜索到一条路径的和为总和的一半,则将块数与 ans 较小值赋给ans。
代码
#include<cstdio>
#include<algorithm>
using namespace std;
int n, m, sum, mid, ans=10000000; //ans默认一个较大的值
int x[12][12], v[12][12]; // v访问数组 0 表示未访问, 1 表示已经访问
int dxy[][2]={ {0, 1}, {0, -1}, {1, 0}, {-1, 0} }; //枚举四个方向
void dfs( int i, int j, int num, int cas ) // i , j 表示这个点的坐标, num表示枚举到当前位置的总和,cas个数
{
if( num > mid || cas > ans) // 剪枝,当前数量超过一半 或 当前个数大于最小个数
{
return;
}
if( num == mid )
{
ans = min( ans, cas ); // 当前数量为一半, 更新答案
return;
}
for( int ii=0; ii<4; ++ii ) //枚举四个方向
{
int tx = i + dxy[ii][0], ty = j + dxy[ii][1];
if( tx >= 1 && tx <= n && ty >= 1 && ty <= m && !v[tx][ty] ) // 下标没有越界 且 未 访问过
{
v[tx][ty] = 1; // 标记已经访问
dfs( tx, ty, num + x[tx][ty], cas+1 ); //往下搜索
v[tx][ty] = 0; //回溯
}
}
}
int main()
{
scanf("%d %d", &m, &n );
for(int i=1; i<=n; ++i )
{
for(int j=1; j<=m; ++j )
{
scanf("%d", &x[i][j] );
sum += x[i][j];
}
}
mid = sum / 2;
v[1][1]=1; // 标记已经访问
dfs( 1, 1, x[1][1], 1 ); // 从 1 1 开始搜索
if( ans != 10000000 )
printf("%d\n", ans );
else
printf("0\n");
return 0;
}