蓝桥杯-试题 历届试题 剪格子

问题描述

如下图所示,3 x 3 的格子中填写了一些整数。

+--*--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+

我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。

本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。

如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。

如果无法分割,则输出 0。

输入格式

程序先读入两个整数 m n 用空格分割 (m,n<10)。

表示表格的宽度和高度。

接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。

输出格式

输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。

样例输入1

3 3
10 1 52
20 30 1
1 2 3

样例输出1

3

样例输入2

4 3
1 1 1 1
1 30 80 2
1 1 1 100

样例输出2

10

思路

经典的搜索问题,分割的两块其中必有一块包含包含左上角,那么就从左上角开始搜索,如果能搜索到一条路径的和为总和的一半,则将块数与 ans 较小值赋给ans。 

代码

#include<cstdio>
#include<algorithm>

using namespace std;

int n, m, sum, mid, ans=10000000; //ans默认一个较大的值 
int x[12][12], v[12][12];  // v访问数组 0 表示未访问, 1 表示已经访问 
int dxy[][2]={ {0, 1}, {0, -1}, {1, 0}, {-1, 0} }; //枚举四个方向 

void dfs( int i, int j, int num, int cas )  // i , j 表示这个点的坐标, num表示枚举到当前位置的总和,cas个数 
{
	if( num > mid  || cas > ans)  // 剪枝,当前数量超过一半  或  当前个数大于最小个数 
	{
		return;
	}
	if( num == mid )   
	{
		ans = min( ans, cas );  // 当前数量为一半, 更新答案 
		return;
	}
	for( int ii=0; ii<4; ++ii )  //枚举四个方向 
	{
		int tx = i + dxy[ii][0], ty = j + dxy[ii][1];
		if( tx >= 1 && tx <= n && ty >= 1 && ty <= m && !v[tx][ty] )  // 下标没有越界 且 未 访问过 
		{
			v[tx][ty] = 1;  // 标记已经访问 
			dfs( tx, ty, num + x[tx][ty], cas+1 ); //往下搜索 
			v[tx][ty] = 0;  //回溯 
		}
	}
}

int main()
{
	scanf("%d %d", &m, &n );
	for(int i=1; i<=n; ++i )
	{
		for(int j=1; j<=m; ++j )
		{
			scanf("%d", &x[i][j] );
			sum += x[i][j];
		}
	}
	mid = sum / 2;
	v[1][1]=1;   // 标记已经访问 
	dfs( 1, 1, x[1][1], 1 );  // 从 1 1 开始搜索 
	if( ans != 10000000 )
		printf("%d\n", ans );
	else
		printf("0\n");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值