亚马逊云科技赋能德勤,帮助客户实现生成式AI合规

关键字: [reInforce, ]

本文字数: 1500, 阅读完需: 8 分钟

导读

来自德勤的Elaine Lee与来自亚马逊云科技的John Fisher探讨了与生成式人工智能相关的挑战和风险,诸如偏见、隐私和安全问题、新兴能力、幻觉、不当行为以及成本和问责问题。他们介绍了德勤的”可信赖人工智能框架”,该框架通过与隐私、透明度、公平性、责任、问责制、稳健性和安全性相关的控制措施,为解决这些风险提供了指导方针。他们还介绍了亚马逊云科技审计管理器的生成式人工智能框架,该框架结合了各种框架和法规的最佳实践,协助组织审计并确保其生成式人工智能实施的合规性。此外,他们强调了德勤Nexus数字神经中心,该中心将亚马逊云科技审计管理器的结果与其他数据源相结合,为组织在亚马逊云科技和非亚马逊云科技环境中的合规状况提供了全面的视角。

演讲精华

以下是小编为您整理的本次演讲的精华,共1200字,阅读时间大约是6分钟。

在不断发展的生成式人工智能领域,出现了诸多挑战,需要采取积极措施以确保负责任和道德的应用。John Fisher是亚马逊云科技(Amazon Web Services)的高级审计经理,而Elaine Lee则是德勤(Deloitte)的云网络安全经理。他们深入探讨了在这片未知领域中航行的复杂性,阐明了德勤确定的六大关键挑战。

首先,偏差构成了一大障碍,因为人工智能系统的有效性在很大程度上取决于训练数据的质量。当数据存在偏差时,可能会导致输出结果偏颇,从而可能导致对某些客户群体的不平等对待。一个现实世界的例子凸显了这一问题:一家电子商务公司被迫放弃他们的人工智能招聘工具,因为该工具在过去十年中主要使用男性候选人的简历进行训练,从而导致了偏向男性申请人的偏差。

隐私和安全是第二大挑战所在。在构建可访问敏感数据的模型时,确保数据隐私和加强系统安全以防止潜在的安全漏洞至关重要。一个基于人工智能的人脸识别平台因将个人照片与从互联网上搜集的数十亿张图像进行比对而引发了严重的隐私问题,遭到了强烈反对。

第三,新兴能力包括模型在不断发展过程中可能表现出的意外行为,这使得全面理解和测试系统输出变得更加复杂。一家知名科技公司在一个流行的社交媒体平台上推出了一款人工智能聊天机器人,旨在通过与人类的互动来学习和提高其对话能力。然而,在推出24小时内,该聊天机器人就开始发布攻击性消息,因为用户利用了其学习能力。

第四个挑战是幻觉,指的是模型生成事实上不准确或无意义的输出。一家航空公司被民事法庭判令赔偿一名客户,因为他们的聊天机器人提供了关于丧葬折扣的不准确信息,这个例子说明了这一问题的现实影响。该客户询问是否会因丧葬而获得机票退款,而聊天机器人错误地表示,如果在90天内申请,可以获得丧葬折扣,导致航空公司被判令支付该客户的机票费用。

隐私、透明度与可解释性、公平与公正、责任与问责制、健壮性与可靠性以及安全性,这份全面系统的指南旨在助力客户在采用生成式人工智能的过程中自信地评估并降低潜在风险,确保其系统在技术层面高效运行、在伦理层面行稳致远、在法律层面合规运作。

为应对前述六大挑战,可信赖人工智能框架提供了控制措施和指导方针。针对偏差问题,该框架指导组织定期进行偏差审计,并在生成式人工智能应用程序中实施审核和过滤。在隐私和安全方面,它强调在访问外部模型时采取良好的实践政策。对于新兴能力,它建议监控模型中出现的新技能,并实施微调。为防止幻觉,它建议持续监控输出、改进性能、进行微调和提示工程。对于不当行为,它倡导建立健全的质量保证流程,以维护客户信任。最后,在成本和责任方面,它建议利用微调功能来核算和预算不同的成本,并利用开源模型有效降低费用。

接下来,约翰·费舍尔介绍了亚马逊云科技 Audit Manager,这是一项允许客户将其亚马逊云科技使用情况映射到各种合规框架的服务,包括德勤可信赖人工智能框架、NIST AI 101、ISO IEC 42001 和学术出版物。Audit Manager 有助于部分自动化可信赖人工智能框架八个领域和相关30个目标的保证活动。它整合了来自 Amazon Bedrock、亚马逊云科技 Config、CloudTrail 和 CloudWatch 的数据源,提供合规性检查和指标。此外,Audit Manager 还支持手动活动,例如人工干预观察和收集证据的提示。

值得注意的是,截至视频录制时,亚马逊云科技 Audit Manager 增加了对 Amazon SageMaker 的支持,使组织能够使用最佳实践框架来监控其在大型语言模型上的开发活动,而不仅仅是生产版本。这使客户能够确保整个人工智能/机器学习生命周期中都遵循了合规性和最佳实践,从开发到生产。

最后,伊莱恩讨论了德勤 Nexus 数字神经中心,它将亚马逊云科技 Audit Manager 结果与非亚马逊云科技输入相结合,为风险和合规管理提供了一个统一的概览。Nexus 提供了几个关键功能。

  1. 评估目标和范围,包括测试非亚马逊云科技技术元素,提供全面视角。
  2. 评估启动,协助建立审计和合规程序与流程,确保持续合规。
  3. 证据收集,从非亚马逊云科技来源汇总数据进行分析,形成准确的合规状况。
  4. 基于人工智能的合规分析,利用逻辑判断是否符合定义范围,提供当前合规状态洞见。
  5. 自定义报告仪表板,包括趋势分析和改进领域,供整个组织的利益相关者使用。

Nexus使组织能够有效解决亚马逊云科技审计管理器检测到的失败,以及整个环境中的合规差距,简化风险和合规管理。通过与亚马逊云科技审计管理器集成,Nexus可以为用户提供指导,有效解决该服务识别出的任何失败或不合规领域。

总的来说,该视频强调了主动风险评估和治理框架(如德勤的可信赖人工智能框架和亚马逊云科技审计管理器)的重要性,以负责任、合乎道德和符合适用法律法规的方式应对采用生成式人工智能所带来的挑战和风险。

下面是一些演讲现场的精彩瞬间:

一家航空公司因其聊天机器人提供了不准确的信息而被法庭判令赔偿,这是一个真实案例,展示了模型产生事实错误或无意义输出的风险。

444f990bf88cfcc23f9b46593be5fc03.jpeg

亚马逊推出了一个最佳实践框架,涵盖8个领域和110个控制目标,利用Amazon Config、CloudTrail和CloudWatch等数据源进行合规性检查,并引入人工审查和亚马逊SageMaker监控大型语言模型的开发活动。

d7026ae48a7e4923a0007188df8214b4.jpeg

亚马逊云科技Audit Manager可以自动收集配置数据和测试控制,为用户节省了收集审计证据的时间和精力。

3b83508e9c24171ed87fbc713d54b131.jpeg

通过自定义报告仪表板,用户可以一目了然地查看合规性状况,无需在多个工具之间切换,从而节省时间并获得全面的环境洞见。

4da76da660b8b608e8984bafb284bdb3.jpeg

在这一重要时刻,演讲者展示了Audit Manager框架,其中包含8个领域和各种控制措施,旨在全面评估人工智能系统的可信赖性。

25856abc553ea42d7bfbe84fde6ef77d.jpeg

德勤Nexus数字神经中心作为一个单一窗口,帮助用户洞见合规环境,无需查看多个不同来源。

0c8f77600e6f6baaca9fd40659c98a55.jpeg

总结

在生成式人工智能快速发展的背景下,组织面临着缓解风险和确保负责任采用的重大挑战。德勤和亚马逊云科技携手合作,提供了一个全面的框架和工具,以主动应对这些挑战。

德勤的”可信赖人工智能框架”提供了一种系统化的方法,用于评估和缓解生成式人工智能采用中的潜在风险。该框架关注七个关键特征:隐私、透明度、公平性、责任、问责制、稳健性和安全性。该框架指导组织解决关键风险,如偏见、隐私和安全问题、新兴能力、幻觉、不当行为和成本管理。

由亚马逊云科技与德勤合作开发的Amazon Audit Manager,使客户能够将其亚马逊云科技使用情况映射到各种框架,包括德勤的可信赖人工智能框架。它自动化了证据收集、简化了协作,并生成了可审计的报告。最近发布的”生成式人工智能最佳实践框架”融合了来自NIST、ISO和学术出版物的指南,使实践与适用的法律法规保持一致。

德勤的Nexus Digital Nerve Center与Amazon Audit Manager形成互补,提供了单一窗口概览,整合了非亚马逊云科技输入,并提供了评估启动、证据收集、合规性分析和自定义报告仪表板。这些解决方案共同赋予组织主动应对生成式人工智能合规性环境的能力,确保在缓解风险和维护监管合规性的同时,以透明、负责任和符合道德的方式采用该技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值