关键字: [出海日城市巡展, 大原模型 (Large Language Model), 生成式Ai能力, 泛娱乐行业, 用户场景落地, 短剧创作应用, 数据沉淀护城河]
本文字数: 2000, 阅读完需: 10 分钟
导读
在这场演讲中,讲者分享了一些有趣的观点和见解:
- 数据沉淀是企业真正的护城河和竞争力所在。
- 在创意与创作领域,目前AI生成内容更多是营销和UGC的辅助工具,还难以完全取代专业媒体生产。
- 在文字处理方面,AI已经相当成熟,如多语种翻译、文本摘要等。
- 他分享了一个”柔性剧情”的概念,利用AI生成短小精悍的视频内容进行低成本投放测试,看市场反响,再决定是否深入拍摄。
- 这种通过AI生成短剧情、换脸配音等方式,可以快速测试不同市场的受众喜好,降低风险。
- 他认为在短句层面上,AI辅助创作和语言翻译都有很大的应用前景。
- 在自然语言对话方面,AI目前在内部知识库查询和客服领域有一定应用,但准确性仍有待提高。
总的来说,这位讲者结合了自身经验,对AI在营销、内容创作、本地化适配等方面的应用前景进行了分析和探讨。
演讲精华
以下是小编为您整理的本次演讲的精华,共1700字,阅读时间大约是8分钟。
生成式人工智能(GENAI)技术经历了一个S形曲线的发展历程。在最初的阶段,GENAI技术的概念被提出,随后通过各种技术、算法和数据的积累,该技术开始逐步实现,缓慢地攀升曲线。直到去年春节前后,一家公司推出了一款突破性的聊天模型,将GENAI技术推向了曲线的高峰。当这款聊天模型首次面世时,人们对其表现感到惊讶,因为它似乎已经达到了与真人对话的水平。事实上,如果告知用户背后是一个真人在驱动对话,人们并不会感到惊奇。令人惊艳的是,这种自然对话的能力来自一台计算机系统。然而,在1980年代的实验室环境下,类似的技术就已经可以实现,只是当时无法做到如此通用和自然。
随着数据和算力的不断积累,这款聊天模型终于突破了技术瓶颈,导致全球数以千万计的用户蜂拥而至,与之进行对话互动。这一现象产生了两个效果:首先,人们意识到该模型虽然神奇,但在初期仍存在一些缺陷和局限性;其次,经过数十亿轮次的对话训练后,模型的性能得到了极大提升。因此,曲线开始缓慢下降,人们对该技术的期望值与实际表现逐渐匹配。随着技术的不断迭代,人们将再次看到GENAI的能力得到提升,用户场景也将重新被拓展。
一份来自投资机构H6Z的分析报告对当前GENAI应用的现状进行了解读。报告发现,在全球流量最大的100款GENAI应用中,只有1款是直接使用第三方大模型,其余均采用了自建模型或基于开源模型进行定制。其中,有5家企业自建了内部模型,4家使用了开源模型,如Llama和Falcon等。这一发现表明,要真正契合自身业务特点,企业需要至少针对性地调整和优化现有的大模型。
报告还发现,尽管GENAI技术在去年曾被追捧,但目前主导地位仍然被视觉模型所占据。在头部应用中,约80%的流量来自Web端,而非移动端应用。这说明GENAI解决的主要是工作效率问题,如代码辅助、文案生成等,而在娱乐领域尚未出现大规模爆发。值得注意的是,报告显示消费者愿意为GENAI应用付费,50种流量最大的产品中,平均每月订阅费用达到21美元,这一价格相对较高。
在泛娱乐行业,GENAI技术的应用前景如何?讲者在与客户的沟通中发现,数据沉淀是企业真正的护城河和核心竞争力所在。GENAI技术能够放大这一优势,帮助企业形成更独特的竞争优势。
在创意与创作领域,目前GENAI技术主要作为营销和UGC(用户生成内容)的辅助工具,难以完全取代专业的媒体内容生产。例如,一位讲者的客户是一家直播平台,他们发现约3%的用户贡献了98%的收入,这是一个非常离谱的比例。由于当前市场行情不佳,他们希望通过低成本的方式,从沉默的长尾用户中再次发掘出高净值用户。于是,他们想出了一个巧妙的方式:主播可以训练一个基于自己的Lora模型,当观众打赏达到一定金额时,该模型就会生成一张主播的个性化虚拟形象照片,作为回馈。观众还可以根据自身喜好定制照片的场景,如让主播出现在太空或海边等。由于生成技术的迭代,推理成本已经很低,一张照片的成本仅为一毛钱左右,因此平台可以承受这一成本。如果观众支付更多,比如10块钱,还可以获得主播与自己的合成照片,难度更高,成本也会相应增加。
讲者提到,他们曾与一家传统媒体客户进行过测试,结果发现,对于这类客户而言,GENAI技术带来的最大冲击是假新闻的生成,而非真正的内容生产素材。因为当时GENAI生成视频的质量还有待提高,无法与专业团队的作品相媲美。不过,在广告领域,GENAI技术可能会带来颠覆性的影响。讲者看过一家公司生成的15秒香水广告视频,质量已经相当逼真,如果将这种低成本生成内容投放到社交平台,仍然具有一定价值。
在文字处理领域,GENAI技术已经相当成熟,如多语种翻译、文本摘要、推文生成等。讲者分享了一个”柔性剧情”的概念:利用GENAI技术生成适应性很强的短剧情视频,时长仅1-2分钟,成本很低。这种视频可以快速测试不同市场对某一IP内容的喜好程度。如果投放反馈良好,企业就可以真正进行剧本创作和拍摄;如果反馈不佳,也只是损失了少量的低成本测试费用。除了生成新的短剧情视频,企业还可以对已有IP内容进行本地化改编,如通过换脸技术、配音、唇形模拟等,将原本的内容语言进行转换,使之更贴近目标市场。这一系列解决方案都可以在亚马逊平台上实现,已有客户在实践中取得了不错的效果。
在自然语言对话领域,GENAI技术可以应用于企业内部知识库的构建。以前,知识传承的模式是由专人维护知识库网站,或者团队成员共同更新。现在,企业可以将这些知识库数据灌入大语言模型中,新员工在遇到问题时,就可以直接向模型查询,获取优先的解决方案。例如,一家数据库团队有超过50人,负责多个产品线和不同类型的数据库,他们可以将知识库数据导入大语言模型,新员工遇到问题时直接向模型查询,如果命中知识库就可以获取解答。在这个场景中,还可以应用数据库查询等功能。
不过,在客服机器人的应用场景中,GENAI技术的准确性仍是一大挑战。讲者分享了一个案例:一家直播客户想为中东市场开发一款客服App,由于该地区语言种类繁多,如果采用人工服务将成本过高。他们希望通过GENAI技术构建一个多语种的客服机器人。然而,实践过程中出现了一个有趣的情况:当用户提出”哪里有卖小笼包”这样的查询时,系统会将”小笼包”与”面包”这两个词的向量值判断为接近,从而错误地推荐出面包店的信息。这种查询匹配的准确性问题,理论上可以通过人工调整向量值来解决,但成本会较高。因此,在客服场景下,GENAI技术的应用仍需要进一步提升准确性。
讲者还分享了另一个有趣的客户案例:这位客户原本是一家直播平台,出海到中东市场后也接了一个为中东某大型连锁品牌做客服App的订单。由于中东地区语言种类繁多,如果采用人工服务将成本过高,因此他们希望利用GENAI技术构建一个多语种客服机器人。然而在实践中,他们发现当用户提出”哪里有卖小笼包”这样的查询时,系统会将”小笼包”与”面包”这两个词的向量值判断为接近,从而错误推荐出面包店的信息。这种查询匹配准确性的问题,理论上可以通过人工调整向量值解决,但成本较高。
总的来说,讲者结合自身经验,对GENAI技术在营销、内容创作、本地化适配等领域的应用前景进行了探讨,并分享了一些有趣的见解和案例。他认为,数据沉淀是企业真正的核心竞争力,GENAI技术能够放大这一优势,帮助企业形成独特的竞争优势。在创意创作领域,GENAI目前主要是营销和UGC的辅助工具,难以完全取代专业媒体生产;但在文字处理方面,GENAI已经相当成熟,可以应用于多语种翻译、文本摘要等场景,还可以辅助创作短剧情视频,用于低成本的市场测试。在自然语言对话领域,GENAI可用于构建企业内部知识库,但在客服机器人等场景下,准确性仍是一大挑战,需要进一步提升。
总结
这位讲者分享了一些关于生成式AI(GENAI)在泛娱乐行业的应用前景和见解。他首先介绍了GENAI技术的发展历程和现状,指出数据沉淀是企业真正的护城河。
在创意与创作领域,目前GENAI更多是营销和UGC的辅助工具,如生成个性化图像、短视频广告等,但还难以完全取代专业媒体生产。而在文字处理方面,GENAI已经相当成熟,如多语种翻译、文本摘要等。
他分享了一个”柔性剧情”的概念,利用GENAI生成短小精悍的视频内容进行低成本投放测试,根据市场反响决定是否深入拍摄。这种方式可以快速测试不同市场的受众喜好,降低风险。
在自然语言对话方面,GENAI可以应用于企业内部知识库构建、客服机器人等场景,但目前的准确性还有待提高。他认为在短句层面上,GENAI辅助创作和语言翻译都有很大的应用前景。
总的来说,讲者结合了自身经验,对GENAI在营销、内容创作、本地化适配等方面的应用前景进行了分析和探讨,并分享了一些有趣的观点和见解。