关键字: [Flywheel, Cloud Infrastructure, Data Management, Medical Imaging, Ai Enablement, End-To-End Platform, Data Liquidity, Data Curation, Containerized Algorithms, Compute Management, Collaboration Enablement, Multi-Center Studies, Precision Medicine, Alzheimer’S Research, Clinical Data Integration, Open Apis]
本文字数: 400, 阅读完需: 2 分钟
导读
在一场亚马逊云科技活动上,演讲者Cena Aslan发表了题为”利用端到端影像数据平台加速GenAI发展”的演讲。她阐述了Flywheel平台如何实现医学影像数据的端到端管理和计算管理,从而推动人工智能(AI)发展。具体而言,该平台从各种来源引入数据,通过自动化流程对其进行管理,并在亚马逊云科技上实现协作和计算资源,以便于AI模型开发。演讲重点介绍了Flywheel在亚马逊云科技上的平台如何实现数据流动性、标准化、合规性,并高效地开发面向医疗保健应用(如精准医疗和多中心研究)的AI模型。
演讲精华
亚马逊云科技(AWS)与Flywheel公司合作,利用端到端影像数据平台加速人工智能(AI)在医疗保健领域的应用。Flywheel公司总监Cena Aslan表示,该公司的使命是为医学影像提供可扩展的云基础设施,实现端到端的数据管理和计算管理平台,从而推动AI的发展。
在医疗保健领域,数据隐匿和分散一直是一大挑战。数据难以集中,准备数据的过程也因缺乏标准而浪费大量时间。此外,还面临着复杂的合规性要求,资源重复利用率低,数据缺乏连续性。Flywheel旨在实现数据流动性,使数据能够在不同系统之间自由流动,包括PACS、VNA、扫描仪等。然而,要实现数据聚合,就必须解决监管合规性、隐私保护、访问控制、数据溯源、多样化数据类型、缺乏标准化标注等挑战,这是AI建模的基础。
Flywheel部署在亚马逊云科技上,利用MongoDB和Amazon弹性Kubernetes服务(EKS)。它能够从各种来源摄取数据,如PACS、VNA、扫描仪和存储设备,并将数据带入以项目为中心的平台。一旦数据进入系统,就会触发一系列称为”gears”的Docker容器化算法,用于数据提取、分类、格式转换和质量控制等。DICOM文件的处理包括提取DICOM标签、将其转换为元数据、分类和格式转换等,所有这些过程都是自动完成的。经过处理的数据会存储在Amazon简单存储服务(S3)对象存储中。
在数据可用且已完成处理后,Flywheel提供开放的REST API、Python软件开发工具包(SDK)和MATLAB SDK,供用户开发自己的脚本。事实上,Flywheel还集成了Jupyter笔记本,用户可以在线与数据进行交互,无需下载数据。用户可以将自己的算法Docker容器化,并将其推送到Flywheel系统中,从而捕获算法的所有依赖项,并利用平台的版本控制功能。
接下来,用户可以利用Amazon弹性计算云(EC2)服务进行计算。不仅可以并行运行多个作业,还可以根据算法的需求动态配置CPU、内存和GPU资源,从而优化计算成本。在完成数据的管理、预处理和计算后,Flywheel支持协作。不同机构的用户可以使用自己的账户登录,Flywheel会与之集成。每个项目都有基于角色的访问控制,确保只有被授权的用户才能访问特定数据集。此外,Flywheel还提供了盲读研究功能,支持临床试验。
凭借这些功能,Flywheel能够支持复杂分析、机器学习操作、多中心研究和精准医学等应用。视频中介绍了一个案例研究,国家阿尔茨海默症协调中心(NAC)利用Flywheel平台,从全国33个阿尔茨海默症研究协调中心收集影像、临床和病理数据。NAC与REDCap数据库集成,自动将临床数据作为元数据摄取到Flywheel中。这些数据经过NAC和国家老龄化研究所(NIA)的处理后,也会被存储在Flywheel中。通过NAC提供的国家ID,NAC能够将不同来源的元数据和数据整合在一起,并通过开放的REST API,将数据提供给自己的数据门户网站和全球研究人员,实现质量控制和数据集成。
总之,Flywheel与亚马逊云科技的合作,为医疗保健领域提供了一个端到端的影像数据管理和计算平台,旨在实现数据流动性,推动AI、多中心研究和精准医学等应用的发展。该平台提供了数据摄取、处理、存储、计算、协作和访问控制等一体化功能,有助于解决医疗保健数据管理中的诸多挑战。
总结
该演讲围绕着Flywheel这一基于云的平台展开,旨在实现数据流动性,并简化医学影像数据的管理与分析,从而促进人工智能的发展。该平台解决了医疗保健领域存在的数据来源分散、缺乏标准化以及合规性挑战等问题。Flywheel从各种来源引入数据,通过自动化流程对数据进行管理,并将其存储在Amazon S3中。它提供了用于数据交互的API和Jupyter笔记本、在Amazon EC2上进行计算的容器化算法,以及具有基于角色的访问控制的协作工具。该平台有助于复杂分析、机器学习运维、多中心研究和精准医学的发展,例如国家阿尔茨海默症协调中心利用它来汇总和整合来自多个研究中心的各种数据类型,用于阿尔茨海默症研究。
该演讲强调,Flywheel通过标准化和集中化来自各种来源的数据、自动化数据管理流程以及在亚马逊云科技上提供可扩展的计算资源,从而实现数据流动性的能力。它突出了该平台在解决数据管理挑战、促进协作以及支持复杂分析和多中心研究方面,对于简化医疗保健领域的人工智能发展所发挥的重要作用。
Flywheel与亚马逊云科技服务(如Amazon S3、EKS和EC2)的集成,使其能够为医学影像数据管理和分析提供可扩展和灵活的基础设施。该平台开放的API、容器化算法和协作工具,赋予研究人员和数据科学家高效处理医学影像数据的能力,从而促进创新并推进精准医学的发展。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。亚马逊云科技致力于成为企业构建和应用生成式AI的首选,通过生成式AI技术栈,提供用于模型训练和推理的基础设施服务、构建生成式AI应用的大模型等工具、以及开箱即用的生成式AI应用。深耕本地、链接全球 -- 在中国,亚马逊云科技通过安全、稳定、可信赖的云服务,助力中国企业加速数字化转型和创新,并深度参与全球化市场。