Python机器学习:决策树003使用信息熵寻找最优划分

该博客探讨了如何利用信息熵作为标准来寻找决策树的最佳划分。通过加载鸢尾花数据集,建立了一个最大深度为2的决策树,并展示了决策边界。接着,模拟了信息熵的计算过程,用于划分数据集,找到最佳的特征和分割点,以降低数据的不确定性。最终,通过多次尝试,找到了最优的分割策略,实现了数据集的有效划分。
摘要由CSDN通过智能技术生成
#使用信息熵寻找最优划分
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()

X = iris.data[:,2:]
y = iris.target
y.shape
from sklearn.tree import DecisionTreeClassifier
dt_clf = DecisionTreeClassifier(max_depth = 2,criterion = "entropy")
dt_clf.fit(X,y)

def plot_decision_boundary(model, axis):

    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值