#使用信息熵寻找最优划分
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
y.shape
from sklearn.tree import DecisionTreeClassifier
dt_clf = DecisionTreeClassifier(max_depth = 2,criterion = "entropy")
dt_clf.fit(X,y)
def plot_decision_boundary(model, axis):
x0, x1 = np.meshgrid(
np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
np.linspace(axis[2], axis[3], int((axis[3]-axis[2