晨风漱
码龄5年
关注
提问 私信
  • 博客:2,157
    2,157
    总访问量
  • 4
    原创
  • 1,233,485
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江西省
  • 加入CSDN时间: 2020-04-04
博客简介:

weixin_46819123的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得5次收藏
创作历程
  • 5篇
    2021年
成就勋章
兴趣领域 设置
  • 人工智能
    pytorch聚类分类回归
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习实战决策树

1.1 决策树的构造决策树优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集。这些数据子集会分布在第一个决策点的所有分支上。如果某个分支下的数据属于同一类型,则当前无需阅读的垃圾邮件已经正确地划分数据分
原创
发布博客 2021.05.29 ·
182 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实战K-近邻算法

k-近邻算法**优点:**精度高、对异常值不敏感、无数据输入假定。**缺点:**计算复杂度高、空间复杂度高。**适用数据范围:**数值型和标称型。工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k
原创
发布博客 2021.05.24 ·
214 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

KNN算法

一、KNN算法概述KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习中的聚类算法),但却是有本质区别的。二、KNN特点KNN是一种非参的,惰性的算法模型。非参的意思并不是说这个算法不需要参数,而是意味着这个模型不会对数据做出任何的假设,与之相对的是线性回归(我们总会假设线性回归是一条直线)。也就是说KNN建立的模型结构是根据数据来决定的,这也比较符合现实的情况,
原创
发布博客 2021.05.14 ·
922 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

B+树

B+树B+树是一种数据结构,是一个n叉树,通常用于数据库和操作系统的文件系统中。B+树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+树元素自底向上插入,这与二叉树恰好相反。在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶节点中,各叶节点指针进行连接。简介B+树在节点访问时间远远超过节点内部访问时间的时候,比可作为替代的实现有着实在的优势。这通常在多数节点在次级存储比如硬盘中的时候出现。通过最大化在每个内部节点内的子节点的数目减少树的高度,平衡操作不经常发生
原创
发布博客 2021.05.12 ·
670 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

B树

B树一棵m阶B树是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:根结点至少有两个孩子; 每个非根节点所包含的关键字个数 j 满足:m/2 < = j < = m-1 除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数k满足:m/2 < = k < = m 所有的叶子结点都位于同一层,或者说根节点到每个叶子结点的长度都相同。 每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所
转载
发布博客 2021.05.11 ·
168 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏