一、题目
Given an n x n grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1.
The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is |x0 - x1| + |y0 - y1|.
Example 1:
Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.
Example 2:
Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
二、题解
class Solution {
public:
int maxDistance(vector<vector<int>>& grid) {
int n = grid.size();
queue<vector<int>> q;
vector<int> move = {-1, 0, 1, 0, -1};
vector<vector<bool>> visted(n,vector<bool>(n,false));
int sea = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
if(grid[i][j]){
visted[i][j] = true;
q.push({i,j});
}
else sea++;
}
}
if(sea == 0 || sea == n * n) return -1;
int level = 0;
while(!q.empty()){
level++;
int size = q.size();
while(size--){
int x = q.front()[0];
int y = q.front()[1];
q.pop();
for(int i = 0;i < 4;i++){
int nextX = x + move[i];
int nextY = y + move[i+1];
if(nextX >= 0 && nextY >= 0 && nextX < n && nextY < n && !visted[nextX][nextY]){
visted[nextX][nextY] = true;
q.push({nextX,nextY});
}
}
}
}
return level - 1;
}
};