ValueError: You are trying to merge on datetime64[ns] and object columns. If you wish to proceed you

问题

python读取的csv文件的某一列是时间,把datetime列转换为datetime类型。

问题示例
—情景:按时间索引ts,用merge横向合并两个dataframe,报错:
ValueError: You are trying to merge on datetime64[ns] and object columns. If you wish to proceed you should use pd.concat
object

results = pd.DataFrame(results)
results.to_csv('capm.csv')
results = pd.read_csv('capm.csv')

merged_df = pd.merge(df, results, on=['ts', 'symbol'], how='inner')

在这里插入图片描述
在这里插入图片描述

1.解决:把Series转换为datetime类型

通过报错发现我们的时间数据读进来之后就变成了object类型,而不是datetime类型
代码如下(示例):

import pandas as pd          #导入模块
results = results .assign( ts=pd.to_datetime(results ['ts'] ))       #把results的'ts'列转化为datetime类型,把转换后的ts列覆盖原来的ts列
a=results['ts'].dtypes #查看列名为"ts"那列的数据类型
print(a)     #发现类型已经变为datetime64[ns],成功!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值