numpy学习笔记

numpy学习笔记(三、图形的ndarray数组处理)

在这里插入图片描述
在这里插入图片描述
使用PIL库
在这里插入图片描述
在这里插入图片描述
图像的手绘处理

from PIL import Image
import numpy as np
#用数组a存储图片
a = np.asarray(Image.open("./okli.jpg").convert('L')).astype('float')
depth = 10. 						# (0-100)
grad = np.gradient(a)				#取图像灰度的梯度值
grad_x, grad_y = grad 				#分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A
vec_el = np.pi/2.2 					# 光源的俯视角度,弧度值
vec_az = np.pi/4. 					# 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) 	#光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) 	#光源对y 轴的影响
dz = np.sin(vec_el) 				#光源对z 轴的影响

b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) 	#光源归一化
b = b.clip(0,255)

im = Image.fromarray(b.astype('uint8')) 	#重构图像
im.save("C:/Users/86138/Desktop/beijingHD.jpg")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值