Domain Generalization | 域适应、域泛化、OOD、开放集问题定义 在实际场景中,训练集和测试集往往存在分布差异,导致模型不work。领域自适应是解决这类问题的一种方法,但是它需要测试数据的一些先验知识。但是很多时候,在测试数据到来前我们往往对它们是一无所知的,因此近年来很多人开始考虑一种更有实际意义的研究场景,也就是领域泛化。
小土堆Pytorch快速入门-ch02 这里使用了一些常见的损失函数,损失和nn.L1Loss(reduction=“sum”)、损失平均nn.L1Loss(reduction=“mean”)、差的平方求和再去平均nn.MSELoss()、交叉熵nn.CrossEntropyLoss()本层就是一个线性的拟合,其中输入的为输入维度和输出维度,最终训练的是直线(线性)的斜率k和截距b。3.对于神经网络中的参数修改需要使用优化器,以达到损失减少的目的,本例使用的为梯度下降法。损失函数作用:计算实际输出和目标输出之间的差距,为我们更新输出一定的依据。