效果图:
主要步骤:
1. 数据准备:我随便用了一组CMIP6的数据,只是为了出图,没有啥实际含义
2. 数据处理:计算了全球平均、年平均、模式平均、相关系数、平均绝对误差
3. 图像绘制:绘制观测与模拟比较的散点图
详细代码:着急的直接拖到最后有完整代码
步骤一:导入库包及图片存储路径并设置中文字体为宋体,西文为新罗马(没有的库包要先下好奥)
###############################################################################
# 导入库包
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
from scipy.stats import pearsonr
# 设置西文字体为新罗马字体,中文为宋体,字号为12
from matplotlib import rcParams
config = {
"font.family": 'serif',
"font.size": 12,
"mathtext.fontset": 'stix',
"font.serif": ['SimSun'],
}
rcParams.update(config)
rcParams['axes.unicode_minus']=False
datapath = r'H:/00.csdn/01data/'
figpath = r'H:/00.csdn/02fig/'
shppath = r'H:/00.csdn/04shp/cn_shp/Province_9/Province_9.shp'
步骤二:读入数据
###############################################################################
# 读入数据
f1 = xr.open_dataset(datapath + 'tas_Amon_BCC-CSM2-MR_historical_r1i1p1f1_gn_185001-201412.nc')
f2 = xr.open_dataset(datapath + 'tas_Amon_NESM3_historical_r1i1p1f1_gn_185001-201412.nc')
f3 = xr.open_dataset(datapath + 'tas_Amon_CAMS-CSM1-0_historical_r1i1p1f1_gn_185001-201412.nc')
f4 = xr.open_dataset(datapath + 'tas_Amon_FGOALS-g3_historical_r1i1p1f1_gn_185001-201412.nc')
t1 = f1['tas'].values - 273.15
t2 =