Gitee上开源的数据结构与算法代码库:数据结构与算法Gitee代码库
递归
定义
- 计算机科学中,递归是一种解决计算问题的方法,其中解决方案取决于同一类问题的更小子集
- 比如单链表递归遍历的例子:
void f(Node node) {
if(node == null) {
return;
}
f(node.next);
}
说明:
- 自己调用自己,如果说每个函数对应着一种解决方案,自己调用自己意味着解决方案是一样的(有规律的)
- 每次调用,函数处理的数据会较上次缩减(子集),而且最后会缩减至无需继续递归
- 内层函数调用(子集处理)完成,外层函数才能算调用完成
思路
- 确定能否使用递归求解
- 推导出递推关系,即父问题与子问题的关系,以及递归的结束条件
例如之前遍历链表的递推关系为
f
(
n
)
=
{
停止
n
=
n
u
l
l
f
(
n
.
n
e
x
t
)
n
≠
n
u
l
l
f(n) = \begin{cases} 停止& n = null \\ f(n.next) & n \neq null \end{cases}
f(n)={停止f(n.next)n=nulln=null
- 深入到最里层叫做递
- 从最里层出来叫做归
- 在递的过程中,外层函数内的局部变量(以及方法参数)并未消失,归的时候还可以用到
代码案例
1. 单路递归 Single Recursion
E01. 阶乘
用递归方法求阶乘
-
阶乘的定义 n ! = 1 ⋅ 2 ⋅ 3 ⋯ ( n − 2 ) ⋅ ( n − 1 ) ⋅ n n!= 1⋅2⋅3⋯(n-2)⋅(n-1)⋅n n!=1⋅2⋅3⋯(n−2)⋅(n−1)⋅n,其中 n n n 为自然数,当然 0 ! = 1 0! = 1 0!=1
-
递推关系
f ( n ) = { 1 n = 1 n ∗ f ( n − 1 ) n > 1 f(n) = \begin{cases} 1 & n = 1\\ n * f(n-1) & n > 1 \end{cases} f(n)={1n∗f(n−1)n=1n>1
代码
private static int f(int n) {
if (n == 1) {
return 1;
}
return n * f(n - 1);
}
拆解伪码如下,假设 n 初始值为 3
f(int n = 3) { // 解决不了,递
return 3 * f(int n = 2) { // 解决不了,继续递
return 2 * f(int n = 1) {
if (n == 1) { // 可以解决, 开始归
return 1;
}
}
}
}
E02. 反向打印字符串
用递归反向打印字符串,n 为字符在整个字符串 str 中的索引位置
- 递:n 从 0 开始,每次 n + 1,一直递到 n == str.length() - 1
- 归:从 n == str.length() 开始归,从归打印,自然是逆序的
递推关系
f
(
n
)
=
{
停止
n
=
s
t
r
.
l
e
n
g
t
h
(
)
f
(
n
+
1
)
0
≤
n
≤
s
t
r
.
l
e
n
g
t
h
(
)
−
1
f(n) = \begin{cases} 停止 & n = str.length() \\ f(n+1) & 0 \leq n \leq str.length() - 1 \end{cases}
f(n)={停止f(n+1)n=str.length()0≤n≤str.length()−1
代码为
public static void reversePrint(String str, int index) {
if (index == str.length()) {
return;
}
reversePrint(str, index + 1);
System.out.println(str.charAt(index));
}
拆解伪码如下,假设字符串为 “abc”
void reversePrint(String str, int index = 0) {
void reversePrint(String str, int index = 1) {
void reversePrint(String str, int index = 2) {
void reversePrint(String str, int index = 3) {
if (index == str.length()) {
return; // 开始归
}
}
System.out.println(str.charAt(index)); // 打印 c
}
System.out.println(str.charAt(index)); // 打印 b
}
System.out.println(str.charAt(index)); // 打印 a
}
E03. 递归-二分查找
/**
* 递归-二分查找
*/
public class BinarySearch {
public static void main(String[] args) {
int[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
System.out.println(search(nums, 5));
}
public static int search(int[] nums, int target){
return f(nums, target, 0, nums.length - 1);
}
private static int f(int[] nums, int target, int left, int right){
if (left > right){
return -1;
}
int mid = (left + right) >>> 1;
if (target < nums[mid]) {
return f(nums, target, left, mid - 1);
}else if(nums[mid] < target){
return f(nums, target, mid + 1, right);
}else {
return mid;
}
}
}
E04. 递归-冒泡排序
- 将数组划分成两部分[0 …j] [j+1 … a.length - 1]
- 左边[0…j]是未排序部分
- 右边[j+1 … a.length-1]是已排序部分
- 未排序区间内,相邻的两个元素比较,如果前一个大于后一个,则交换位置
public class BubbleSort {
public static void sort(int[] nums){
bubble(nums, nums.length - 1 );
}
/**
* @param nums 待排序数组
* @param j 未排序的右边界
*/
private static void bubble(int[] nums, int j){
if (j == 0){
return;
}
int x = 0;
for (int i = 0; i < j; i++) {
if (nums[i] > nums[i+1]){
int temp = nums[i];
nums[i] = nums[i+1];
nums[i+1] = temp;
x = i;
}
}
bubble(nums, x);
}
@Test
public void test(){
int[] expected = {1, 2, 3, 4, 5};
int[] nums = {5, 4, 3, 2, 1};
BubbleSort.sort(nums);
Assertions.assertArrayEquals(expected,nums);
}
}
E05. 递归-插入排序
/**
* 插入排序
*/
public class InsertionSort {
public static void sort(int[] nums){
insertion(nums, 1);
}
/**
* 插入
* @param nums 待排序数组
* @param low 未排序区域的左边界
*/
private static void insertion(int[] nums, int low){
if (low == nums.length){
return;
}
int temp = nums[low];
int i = low - 1; // 已排序区域的指针
while(i >= 0 && nums[i] > temp){ // 没有找到插入位置一直循环
nums[i + 1] = nums[i]; // 空出插入位置
i--;
}
// 找到插入位置
if (i + 1 != low) {
nums[i + 1] = temp;
}
insertion(nums, low+1);
}
@Test
public void test(){
int[] expected = {1, 2, 3, 4, 5};
int[] a1 = {5, 4, 3, 2, 1};
sort(a1);
Assertions.assertArrayEquals(expected, a1);
int[] a2 = {5, 3, 1, 2, 4};
sort(a2);
Assertions.assertArrayEquals(expected, a2);
}
}
2. 多路递归 Multi Recursion
E01. 斐波那契数列
- 之前的例子是每个递归函数只包含一个自身的调用,这称之为 single recursion
- 如果每个递归函数例包含多个自身调用,称之为 multi recursion
递推关系
f
(
n
)
=
{
0
n
=
0
1
n
=
1
f
(
n
−
1
)
+
f
(
n
−
2
)
n
>
1
f(n) = \begin{cases} 0 & n=0 \\ 1 & n=1 \\ f(n-1) + f(n-2) & n>1 \end{cases}
f(n)=⎩
⎨
⎧01f(n−1)+f(n−2)n=0n=1n>1
下面的表格列出了数列的前几项
F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 |
/**
* 多路递归-斐波那契数列
*/
public class Fibonacci {
public static int f(int n){
if (n == 0) {
return 0;
}
if (n == 1){
return 1;
}
int x = f(n - 1);
int y = f(n - 2);
return x + y;
}
public static void main(String[] args) {
int f = f(12);
System.out.println(f);
}
}
时间复杂度
- 递归的次数也符合斐波那契规律, 2 ∗ f ( n + 1 ) − 1 2 * f(n+1)-1 2∗f(n+1)−1
- 时间复杂度推导过程
- 斐波那契通项公式 f ( n ) = 1 5 ∗ ( 1 + 5 2 n − 1 − 5 2 n ) f(n) = \frac{1}{\sqrt{5}}*({\frac{1+\sqrt{5}}{2}}^n - {\frac{1-\sqrt{5}}{2}}^n) f(n)=51∗(21+5n−21−5n)
- 简化为: f ( n ) = 1 2.236 ∗ ( 1.618 n − ( − 0.618 ) n ) f(n) = \frac{1}{2.236}*({1.618}^n - {(-0.618)}^n) f(n)=2.2361∗(1.618n−(−0.618)n)
- 带入递归次数公式 2 ∗ 1 2.236 ∗ ( 1.618 n + 1 − ( − 0.618 ) n + 1 ) − 1 2*\frac{1}{2.236}*({1.618}^{n+1} - {(-0.618)}^{n+1})-1 2∗2.2361∗(1.618n+1−(−0.618)n+1)−1
- 时间复杂度为 Θ ( 1.61 8 n ) \Theta(1.618^n) Θ(1.618n)
E02. 汉诺塔
Tower of Hanoi,是一个源于印度古老传说:大梵天创建世界时做了三根金刚石柱,在一根柱子从下往上按大小顺序摞着 64 片黄金圆盘,大梵天命令婆罗门把圆盘重新摆放在另一根柱子上,并且规定
- 一次只能移动一个圆盘
- 小圆盘上不能放大圆盘
思路
-
假设每根柱子标号 a,b,c,每个圆盘用 1,2,3 … 表示其大小,圆盘初始在 a,要移动到的目标是 c
-
如果只有一个圆盘,此时是最小问题,可以直接求解
- 移动圆盘1 a ↦ c a \mapsto c a↦c
-
如果有两个圆盘,那么
- 圆盘1 a ↦ b a \mapsto b a↦b
- 圆盘2 a ↦ c a \mapsto c a↦c
- 圆盘1 b ↦ c b \mapsto c b↦c
-
如果有三个圆盘,那么
- 圆盘12 a ↦ b a \mapsto b a↦b
- 圆盘3 a ↦ c a \mapsto c a↦c
- 圆盘12 b ↦ c b \mapsto c b↦c
-
如果有四个圆盘,那么
- 圆盘 123 a ↦ b a \mapsto b a↦b
- 圆盘4 a ↦ c a \mapsto c a↦c
- 圆盘 123 b ↦ c b \mapsto c b↦c
题解
/**
* 多路递归-汉诺塔
*/
public class HanoiTower {
static LinkedList<Integer> a = new LinkedList<>();
static LinkedList<Integer> b = new LinkedList<>();
static LinkedList<Integer> c = new LinkedList<>();
/**
* 初始化圆盘
* @param n 圆盘的个数(由大到小)
*/
static void init(int n){
for (int i = n; i >= 1 ; i--) {
a.addLast(i);
}
}
/**
*
* @param n 圆盘个数
* @param a 原柱子 (左)
* @param b 借用的柱子 (中)
* @param c 目标的柱子 (右)
*/
static void move(int n, LinkedList<Integer> a, LinkedList<Integer> b, LinkedList<Integer> c){
if (n == 0){
return;
}
move(n-1, a, c, b); // 把 n-1个盘子 由a,借c,移至b
c.addLast(a.removeLast()); // 把最后的盘子由 a 移至 c
print();
move(n-1, b, a, c); // // 把 n-1个盘子 由b,借a,移至c
}
public static void main(String[] args) {
init(3);
print();
move(3, a, b, c);
}
private static void print() {
System.out.println("--------------");
System.out.println(a);
System.out.println(b);
System.out.println(c);
}
}
E03. 杨辉三角
分析
把它斜着看
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
- 行 i i i,列 j j j,那么 [ i ] [ j ] [i][j] [i][j] 的取值应为 [ i − 1 ] [ j − 1 ] + [ i − 1 ] [ j ] [i-1][j-1] + [i-1][j] [i−1][j−1]+[i−1][j]
- 当 j = 0 j=0 j=0 或 i = j i=j i=j 时, [ i ] [ j ] [i][j] [i][j] 取值为 1 1 1
/**
* 多路递归-杨辉三角
*/
public class PascalTriangle {
public static void main(String[] args) {
// System.out.println(element(4, 2)); // 计算某列某行的值
// print(10);
// print1(10);
print2(10);
}
/**
* 优化2 - 使用一位数组记忆法
* @param row
* @param i
*/
private static void createRow(int[] row, int i){
if (i == 0){
row[0] = 1;
return;
}
for (int j = i; j > 0; j--) {
row[j] = row[j] +row[j - 1];
}
}
/**
* 配合createRow调用
* @param n
*/
public static void print2(int n){
int[] row = new int[n];
for (int i = 0; i < n; i++) { // 行
createRow(row, i);
// 打印空格
printSpace(n, i);
for (int j = 0; j <= i; j++) { // 列
System.out.printf("%-4d", row[j]);
}
System.out.println();
}
}
/**
* 优化1-使用二维数组记忆法
* @param triangle 二位数组
* @param i 行坐标
* @param j 列坐标
* @return
*/
private static int element1(int[][] triangle, int i, int j){
if (triangle[i][j] > 0){
return triangle[i][j];
}
if (j == 0 || i == j){
triangle[i][j] = 1;
return 1;
}
triangle[i][j] = element1(triangle,i - 1, j - 1) + element1(triangle, i - 1, j);
return triangle[i][j];
}
/**
* 配合element1调用
* @param n
*/
public static void print1(int n){
int[][] triangle = new int[n][];
for (int i = 0; i < n; i++) { // 行
triangle[i] = new int[i + 1];
// 打印空格
printSpace(n, i);
for (int j = 0; j <= i; j++) { // 列
System.out.printf("%-4d", element1(triangle, i, j));
}
System.out.println();
}
}
/**
* 直接递归-未优化
* @param i 行坐标
* @param j 列坐标
* @return
*/
private static int element(int i, int j){
if (j == 0 || i == j){
return 1;
}
return element(i - 1, j - 1) + element(i - 1, j);
}
private static void printSpace(int n, int i){
int num = (n - 1 - i) * 2;
for (int j = 0; j < num; j++) {
System.out.print(" ");
}
}
public static void print(int n){
for (int i = 0; i < n; i++) {
// 打印行
// 打印空格
printSpace(n, i);
for (int j = 0; j <= i; j++) {
// 打印列
System.out.printf("%-4d", element(i, j));
}
System.out.println();
}
}
}
3. 递归优化
a.记忆法
- Memoization 记忆法(也称备忘录)是一种优化技术,通过存储函数调用结果(通常比较昂贵),当再次出现相同的输入(子问题)时,就能实现加速效果,改进后的代码
/**
* 多路递归-斐波那契数列
*/
public class Fibonacci {
private static int[] cache;
public static int fibonacci(int n){
cache = new int[n + 1];
Arrays.fill(cache, -1); // 让数组初始值都是-1
cache[0] = 0;
cache[1] = 1;
return f(n);
}
public static int f(int n){
if (cache[n] != -1){
return cache[n];
}
int x = f(n - 1);
int y = f(n - 2);
cache[n] = x + y;
return x + y;
}
public static void main(String[] args) {
int f = fibonacci(12);
System.out.println(f);
}
}
优化后,只要结果被缓存,就不会执行其子问题
- 改进后的时间复杂度为 O ( n ) O(n) O(n)
- 请自行验证改进后的效果
- 请自行分析改进后的空间复杂度
注意
- 记忆法是动态规划的一种情况,强调的是自顶向下的解决
- 记忆法的本质是空间换时间
b.尾递归
爆栈
用递归做 n + ( n − 1 ) + ( n − 2 ) . . . + 1 n + (n-1) + (n-2) ... + 1 n+(n−1)+(n−2)...+1
public static long sum(long n) {
if (n == 1) {
return 1;
}
return n + sum(n - 1);
}
在我的机器上 n = 12000 n = 12000 n=12000 时,爆栈了
Exception in thread "main" java.lang.StackOverflowError
at Test.sum(Test.java:10)
at Test.sum(Test.java:10)
at Test.sum(Test.java:10)
at Test.sum(Test.java:10)
at Test.sum(Test.java:10)
...
为什么呢?
- 每次方法调用是需要消耗一定的栈内存的,这些内存用来存储方法参数、方法内局部变量、返回地址等等
- 方法调用占用的内存需要等到方法结束时才会释放
尾调用
如果函数的最后一步是调用一个函数,那么称为尾调用,例如
function a() {
return b()
}
下面三段代码不能叫做尾调用 :
function a() {
const c = b()
return c
}
- 因为最后一步并非调用函数
function a() {
return b() + 1
}
- 最后一步执行的是加法
function a(x) {
return b() + x
}
- 最后一步执行的是加法
为何尾递归才能优化?
调用 a 时
- a 返回时发现:没什么可留给 b 的,将来返回的结果 b 提供就可以了,用不着我 a 了,我的内存就可以释放
调用 b 时
- b 返回时发现:没什么可留给 c 的,将来返回的结果 c 提供就可以了,用不着我 b 了,我的内存就可以释放
如果调用 a 时
- 不是尾调用,例如 return b() + 1,那么 a 就不能提前结束,因为它还得利用 b 的结果做加法
尾递归
- 尾递归是尾调用的一种特例,也就是最后一步执行的是同一个函数
- Java语言不支持尾递归
改循环避免爆栈 (改成循环)
public static void main(String[] args) {
long n = 100000000;
long sum = 0;
for (long i = n; i >= 1; i--) {
sum += i;
}
System.out.println(sum);
}
4. 递归时间复杂度
若有递归式
T
(
n
)
=
a
T
(
n
b
)
+
f
(
n
)
T(n) = aT(\frac{n}{b}) + f(n)
T(n)=aT(bn)+f(n)
其中
- T ( n ) T(n) T(n) 是问题的运行时间, n n n 是数据规模
- a a a 是子问题个数
- T ( n b ) T(\frac{n}{b}) T(bn) 是子问题运行时间,每个子问题被拆成原问题数据规模的 n b \frac{n}{b} bn
- f ( n ) f(n) f(n) 是除递归外执行的计算 ( n c n^c nc)
令 x = log b a x = \log_{b}{a} x=logba,即 x = log 子问题缩小倍数 子问题个数 x = \log_{子问题缩小倍数}{子问题个数} x=log子问题缩小倍数子问题个数
那么
T
(
n
)
=
{
Θ
(
n
x
)
f
(
n
)
=
O
(
n
c
)
并且
c
<
x
Θ
(
n
x
log
n
)
f
(
n
)
=
Θ
(
n
x
)
Θ
(
n
c
)
f
(
n
)
=
Ω
(
n
c
)
并且
c
>
x
T(n) = \begin{cases} \Theta(n^x) & f(n) = O(n^c) 并且 c \lt x\\ \Theta(n^x\log{n}) & f(n) = \Theta(n^x)\\ \Theta(n^c) & f(n) = \Omega(n^c) 并且 c \gt x \end{cases}
T(n)=⎩
⎨
⎧Θ(nx)Θ(nxlogn)Θ(nc)f(n)=O(nc)并且c<xf(n)=Θ(nx)f(n)=Ω(nc)并且c>x
例1
T
(
n
)
=
2
T
(
n
2
)
+
n
4
T(n) = 2T(\frac{n}{2}) + n^4
T(n)=2T(2n)+n4
- 此时 x = 1 < 4 x = 1 < 4 x=1<4,由后者决定整个时间复杂度 Θ ( n 4 ) \Theta(n^4) Θ(n4)
- 如果觉得对数不好算,可以换为求【 b b b 的几次方能等于 a a a】
例2
T ( n ) = T ( 7 n 10 ) + n T(n) = T(\frac{7n}{10}) + n T(n)=T(107n)+n
- a = 1 , b = 10 7 , x = 0 , c = 1 a=1, b=\frac{10}{7}, x=0, c=1 a=1,b=710,x=0,c=1
- 此时 x = 0 < 1 x = 0 < 1 x=0<1,由后者决定整个时间复杂度 Θ ( n ) \Theta(n) Θ(n)
例3
T ( n ) = 16 T ( n 4 ) + n 2 T(n) = 16T(\frac{n}{4}) + n^2 T(n)=16T(4n)+n2
- a = 16 , b = 4 , x = 2 , c = 2 a=16, b=4, x=2, c=2 a=16,b=4,x=2,c=2
- 此时 x = 2 = c x=2 = c x=2=c,时间复杂度 Θ ( n 2 log n ) \Theta(n^2 \log{n}) Θ(n2logn)
例4
T ( n ) = 7 T ( n 3 ) + n 2 T(n)=7T(\frac{n}{3}) + n^2 T(n)=7T(3n)+n2
- a = 7 , b = 3 , x = 1. ? , c = 2 a=7, b=3, x=1.?, c=2 a=7,b=3,x=1.?,c=2
- 此时 x = log 3 7 < 2 x = \log_{3}{7} < 2 x=log37<2,由后者决定整个时间复杂度 Θ ( n 2 ) \Theta(n^2) Θ(n2)
例5
T ( n ) = 7 T ( n 2 ) + n 2 T(n) = 7T(\frac{n}{2}) + n^2 T(n)=7T(2n)+n2
- a = 7 , b = 2 , x = 2. ? , c = 2 a=7, b=2, x=2.?, c=2 a=7,b=2,x=2.?,c=2
- 此时 x = l o g 2 7 > 2 x = log_2{7} > 2 x=log27>2,由前者决定整个时间复杂度 Θ ( n log 2 7 ) \Theta(n^{\log_2{7}}) Θ(nlog27)
例6
T ( n ) = 2 T ( n 4 ) + n T(n) = 2T(\frac{n}{4}) + \sqrt{n} T(n)=2T(4n)+n
- a = 2 , b = 4 , x = 0.5 , c = 0.5 a=2, b=4, x = 0.5, c=0.5 a=2,b=4,x=0.5,c=0.5
- 此时 x = 0.5 = c x = 0.5 = c x=0.5=c,时间复杂度 Θ ( n log n ) \Theta(\sqrt{n}\ \log{n}) Θ(n logn)
例7. 二分查找递归
int f(int[] a, int target, int i, int j) {
if (i > j) {
return -1;
}
int m = (i + j) >>> 1;
if (target < a[m]) {
return f(a, target, i, m - 1);
} else if (a[m] < target) {
return f(a, target, m + 1, j);
} else {
return m;
}
}
- 子问题个数 a = 1 a = 1 a=1
- 子问题数据规模缩小倍数 b = 2 b = 2 b=2
- 除递归外执行的计算是常数级 c = 0 c=0 c=0
T ( n ) = T ( n 2 ) + n 0 T(n) = T(\frac{n}{2}) + n^0 T(n)=T(2n)+n0
- 此时 x = 0 = c x=0 = c x=0=c,时间复杂度 Θ ( log n ) \Theta(\log{n}) Θ(logn)
5. 递归时间复杂度-展开求解
像下面的递归式,都不能用主定理求解
例1 - 递归求和
long sum(long n) {
if (n == 1) {
return 1;
}
return n + sum(n - 1);
}
T ( n ) = T ( n − 1 ) + c T(n) = T(n-1) + c T(n)=T(n−1)+c, T ( 1 ) = c T(1) = c T(1)=c
下面为展开过程
T ( n ) = T ( n − 2 ) + c + c T(n) = T(n-2) + c + c T(n)=T(n−2)+c+c
T ( n ) = T ( n − 3 ) + c + c + c T(n) = T(n-3) + c + c + c T(n)=T(n−3)+c+c+c
…
T ( n ) = T ( n − ( n − 1 ) ) + ( n − 1 ) c T(n) = T(n-(n-1)) + (n-1)c T(n)=T(n−(n−1))+(n−1)c
- 其中 T ( n − ( n − 1 ) ) T(n-(n-1)) T(n−(n−1)) 即 T ( 1 ) T(1) T(1)
- 带入求得 T ( n ) = c + ( n − 1 ) c = n c T(n) = c + (n-1)c = nc T(n)=c+(n−1)c=nc
时间复杂度为 O ( n ) O(n) O(n)
例2 - 递归冒泡排序
void bubble(int[] a, int high) {
if(0 == high) {
return;
}
for (int i = 0; i < high; i++) {
if (a[i] > a[i + 1]) {
swap(a, i, i + 1);
}
}
bubble(a, high - 1);
}
T ( n ) = T ( n − 1 ) + n T(n) = T(n-1) + n T(n)=T(n−1)+n, T ( 1 ) = c T(1) = c T(1)=c
下面为展开过程
T ( n ) = T ( n − 2 ) + ( n − 1 ) + n T(n) = T(n-2) + (n-1) + n T(n)=T(n−2)+(n−1)+n
T ( n ) = T ( n − 3 ) + ( n − 2 ) + ( n − 1 ) + n T(n) = T(n-3) + (n-2) + (n-1) + n T(n)=T(n−3)+(n−2)+(n−1)+n
…
T ( n ) = T ( 1 ) + 2 + . . . + n = T ( 1 ) + ( n − 1 ) 2 + n 2 = c + n 2 2 + n 2 − 1 T(n) = T(1) + 2 + ... + n = T(1) + (n-1)\frac{2+n}{2} = c + \frac{n^2}{2} + \frac{n}{2} -1 T(n)=T(1)+2+...+n=T(1)+(n−1)22+n=c+2n2+2n−1
时间复杂度 O ( n 2 ) O(n^2) O(n2)
注:
- 等差数列求和为 个数 ∗ ∣ 首项 − 末项 ∣ 2 个数*\frac{\vert首项-末项\vert}{2} 个数∗2∣首项−末项∣
不会推导的同学可以进入 https://www.wolframalpha.com/ (选Math input)
- 例1 输入 f(n) = f(n - 1) + c, f(1) = c
- 例2 输入 f(n) = f(n - 1) + n, f(1) = c
- 例3 输入 f(n) = f(n - 1) + n + c, f(1) = c