雷达和可见光融合识别方法研究

本文探讨了毕业设计课题——雷达和可见光融合识别方法研究,利用相控阵雷达探测无人机位置并转换至相机坐标系,结合YOLOv5模型在ROI区域进行高效识别。针对多目标情况,文章还涉及了ROI区域去重处理及2DRP算法优化。
摘要由CSDN通过智能技术生成
  • 毕业设计

  • 简介

  • 我要做一个毕业设计,题目是:《雷达和可见光的融合识别方法研究》。用到的设备是:相控阵雷达和相机。要做的是,相控阵雷达去探测无人机的位置,而后将其在雷达坐标系中的位置信息,依次转换为:世界坐标系、相机坐标系、图像坐标系、像素坐标系。从而将雷达探测到无人机的位置信息与相机进行空间融合。这个步骤可以让相机捕获的图像中定位到无人机,并在该点生成一个ROI区域(它是一个矩形框),再之后将ROI区域输入到python的yolov5模型之中,这样yolov5就不用识别相机整幅图像,而是roi区域这一小图像,以此提升识别率和效率。但是如果是多目标的话,我就涉及到矩形框去重处理了,因为矩形框可能会重叠、临界相交等。而且还需要运用到数学的2DRP算法去获得最大的有效矩形框。

  • 目录

  • 1. 引言

    评论 4
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值