C语言计算矩阵的逆

在线性代数中,求一个矩阵的逆矩阵通常运算量很大。运用本程序可以快速实现这一过程。

数学原理

要求一个矩阵的逆,该矩阵需要满足一定的条件:为一个方阵,且其行列式的值不为0。因此,本程序需要先验证矩阵的行列式不为0,再进一步求其逆矩阵。
逆矩阵的计算公式如下:
A − 1 = 1 d e t ( A ) A ∗ A^{-1}=\frac{1}{det(A)}A^* A1=det(A)1A
其中A*为A的伴随矩阵:
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) A^*=\begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1} \\ A_{12}&A_{22}&\cdots&A_{n2} \\ \vdots&\vdots&&\vdots \\ A_{1n}&A_{2n}&\cdots&A_{nn} \\ \end{pmatrix} A= A11A12A1nA21A22A2nAn1An2Ann
其中,Aij是aij关于行列式det(A)的代数余子式。

完整代码

#include <stdio.h>
#include "solve_det.h"

int algebraic_cofactor(int det[], int n, int i, int j) {
	
	int cofactor[(n-1)*(n-1)];
	for (int r = 0; r < i; r++) {
		for (int c = 0; c < j; c++) {
			cofactor[r*(n-1)+c] = det[r*n+c];
		}
		for (int c = j + 1; c < n; c++) {
			cofactor[r*(n-1)+c-1] = det[r*n+c];
		}
	}
	for (int r = i + 1; r < n; r++) {
		for (int c = 0; c < j; c++) {
			cofactor[(r-1)*(n-1)+c] = det[r*n+c];
		}
		for (int c = j + 1; c < n; c++) {
			cofactor[(r-1)*(n-1)+c-1] = det[r*n+c];
		}
	}
	
	int result = solve_det(cofactor, n - 1);
	if ((i + j) % 2 == 1) {
		result = -result;
	}
	return result;
}

int main() {
	
	int n;
	printf("n = ");
	scanf("%d", &n);
	
	int det[n*n];
    for (int r = 0; r < n; r++) {
        printf("row %d: ", r + 1);
        for (int c = 0; c < n; c++) {
            scanf("%d", &det[r*n+c]);
        }
    }
    
    int DET = solve_det(det, n);
    if (DET == 0) {
    	printf("The matrix is not invertible!");
    	return 0;
	}
	else {
		double adjoint_matrix[n][n];
		for (int r = 0; r < n; r++) {
			for (int c = 0; c < n; c++) {
				adjoint_matrix[r][c] = 1.0 * algebraic_cofactor(det, n, c, r) / DET;
			}
		}
		printf("\nresult:");
		for (int r = 0; r < n; r++) {
			printf("\nrow %d: ", r + 1);
			for (int c = 0; c < n; c++) {
				printf("%.2f ", adjoint_matrix[r][c]);
			}
		}
		return 0;
	}
} 

其中,头文件solve_det.h的代码如下:

void swap(int *a, int *b) {
    int temp = *a;
    *a = *b;
    *b = temp;
}

int odd_even(int list[], int size) {
    int o_e = 1;
    for (int i = 0; i < size; i++) {
        for (int j = i + 1; j < size; j++) {
            if (list[i] > list[j]) {
                o_e = -o_e;
            }
        }
    }
    return o_e;
}

int last(int list[], int size) {
	for (int i = 0; i < size; i++) {
		if (list[i] != size - i - 1) {
			return 0;
		}
	}
	return 1;
}

void sort(int list[], int size, int first) {
	int smallest, smallestx;
	for (int i = first; i < size - 1; i++) {
		smallest = size;
		for (int j = i; j < size; j++) {
			if (list[j] < smallest) {
				smallest = list[j];
				smallestx = j;
			}
		}
		swap(&list[i], &list[smallestx]);
	}
}

void next(int list[], int size) {
    int bigger, biggerx, first;
    for (int i = size - 2; i >= 0; i--) {
        first = list[i];
        bigger = size + 1;
        for (int j = i + 1; j < size; j++) {
            if (list[j] > first && list[j] < bigger) {
                bigger = list[j];
                biggerx = j;
        	}
    	}
    	if (bigger < size + 1) {
            swap(&list[i], &list[biggerx]);
            sort(list, size, i + 1);
            return;
        }
    }
}

int solve_det(int det[], int n) {
	
	int nums[n];
    for (int i = 0; i < n; i++) {
        nums[i] = i;
    }
	
	int result = 0, r;
    while (1) {
        r = odd_even(nums, n);
        for (int k = 0; k < n; k++) {
            r *= det[k*n+nums[k]];
        }
        result += r;
        if (last(nums, n)) {
        	return result;
		}
		else {
			next(nums, n);
		}
    }
}

代码解释

关于solve_det.h的解释可以在博文《C语言计算行列式的值》中找到,区别仅仅是把主函数中的内容转移至了solve_det函数中。为了传参方便,原本以二维数组形式表示的行列式det被改成了等效的一维数组,即将n×n个元素按行和列的原顺序放入n*n的一维数组中。
下面对本程序的代码进行逐段解释。

求代数余子式函数algebraic_cofactor

这段代码的作用是求一个矩阵中指定位置(第i行第j列)元素的代数余子式。首先,去除该元素所在的行和列上的所有元素,得到一个n-1阶的矩阵cofactor,即为余子式:

int cofactor[(n-1)*(n-1)];
for (int r = 0; r < i; r++) {
	for (int c = 0; c < j; c++) {
		cofactor[r*(n-1)+c] = det[r*n+c];
	}
	for (int c = j + 1; c < n; c++) {
		cofactor[r*(n-1)+c-1] = det[r*n+c];
	}
}
for (int r = i + 1; r < n; r++) {
	for (int c = 0; c < j; c++) {
		cofactor[(r-1)*(n-1)+c] = det[r*n+c];
	}
	for (int c = j + 1; c < n; c++) {
		cofactor[(r-1)*(n-1)+c-1] = det[r*n+c];
	}
}

同样,cofactor也是以一维数组的形式对二维数组进行等效表示。然后,调用solve_det函数求余子式的值:

int result = solve_det(cofactor, n - 1);

最后,需要乘上系数 ( − 1 ) i + j (-1)^{i+j} (1)i+j,即只需在i+j为奇数时,将result取为自身的相反数,并返回:

if ((i + j) % 2 == 1) {
	result = -result;
}
return result;

主函数Part1:输入矩阵阶数及所有元素

本部分的代码与《C语言计算行列式的值》中的相同,不再赘述。

int n;
printf("n = ");
scanf("%d", &n);

int det[n*n];
   for (int r = 0; r < n; r++) {
       printf("row %d: ", r + 1);
       for (int c = 0; c < n; c++) {
           scanf("%d", &det[r*n+c]);
       }
   }

主函数Part2:检验矩阵满足求逆的条件

int DET = solve_det(det, n);
   if (DET == 0) {
   	printf("The matrix is not invertible!");
   	return 0;
}

当矩阵行列式的值DET为0时中止程序,否则进行后续步骤:

主函数Part3:求矩阵的逆

else {
	double adjoint_matrix[n][n];
	for (int r = 0; r < n; r++) {
		for (int c = 0; c < n; c++) {
			adjoint_matrix[r][c] = 1.0 * algebraic_cofactor(det, n, c, r) / DET;
		}
	}
	printf("\nresult:");
	for (int r = 0; r < n; r++) {
		printf("\nrow %d: ", r + 1);
		for (int c = 0; c < n; c++) {
			printf("%.2f ", adjoint_matrix[r][c]);
		}
	}
	return 0;
	}

按照矩阵的逆的公式求值。由于需要将伴随矩阵的每一项除以DET,因此可能会出现浮点数,将adjoint_matrix的元素类型设定为double。打印结果时设定保留小数点后两位。

运行结果示例

当行列式的值为0时中止程序:
运行结果示例1
一个正确计算的矩阵的逆:
运行结果示例2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值