RSA加密算法代码实现

RSA加密算法代码实现

作业目标

C语言实现RSA加密算法,并将其优化到尽量快的速度。

算法描述

RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,但是它的安全性还没有被证明,当然也没有被否定。

RSA流程

步骤说明描述
1选择⼀对不相等且⾜够⼤的质数p, q
2计算p,q的乘积n=p*q
3计算n的欧拉函数φ(n)=(p-1)*(q-1)
4选⼀个与φ(n)互质的整数e1<e<φ(n)
5得到公钥KU=(e,n)
6计算出e对于φ(n)的模反元素dde mod φ(n)=1
7得到私钥KR=(d,n)
8加密明⽂ M M^e mod n = C
9解密密⽂ C C^d mod n = M

注意 p和q是保密的,n是公开的
上述可以看成是密钥的产生和加密解密两个模块

数学准备

  • 互质关系
    如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。
    不是质数也可以是互质关系,在证明时需要用到 ( M k , n ) (M^k, n) (Mk,n) 互质.
  • 欧拉公式 与 欧拉定理
    • φ(n)为比n小但与n互素的正整数个数,称为n的欧拉函数。
    • 对任一素数p, 有φ(n)=p-1,而对于两个不同的素数p和q,则对n=pq,可以证明φ(n)=φ(p*q)=φ§*φ(q)=(p-1)(q-1) 。
    • 欧拉定理:设 n 是大于 1 的整数,如果 a 满足 gcd(a, n) = 1 的整数,则: a ϕ ( n ) ≡ 1 ( m o d n ) a^{\phi(n)}\equiv1\pmod n aϕ(n)1(modn)
  • 模反元素 d
    • 乘法逆元:如果x与y的积除以z所得的余数为1,即xy = 1 (mod z),则称x和y对于模数z来说互为逆元。
    • 模反元素 d:如果e与φ(n)互质,则存在d使得e*d - 1 被 φ(n)整除。即 e*d (mod φ(n)) =1.
  • Solovay-Strassen概率性素性检测法:
    • 判定n是素数的正确性概率至少为50%,出错的概率小于50%。通过随机均匀的从{1,2,···,n-1}中选取a,对n进行k次Solovay-Strassen素性检测,如果每次都通过了素性检测,即没有输出“n不是素数”,则n是合数的概率小于1/(2k)。当k足够大时,1/(2k)是一个非常小的数。也即误判的可能性非常小。
  • 雅可比符号:
    • image.png
  • 二次剩余
    • 可用来判断二次同余式是否有解;
    • 当存在某个X,式子$X^2\equiv d\pmod p $ 成立时,称“d是模p的二次剩余”
    • 质数乘方:每个奇数的平方都模8余1,因此模4也余1。设a是一个奇数。m为8,16或2的更高次方,那么a是关于m的二次剩余当且仅当$a\equiv 1\pmod 8 $
    • 对于奇质数p以及与p互质的整数A,A是关于p的若干次乘方的剩余当且仅当它是关于p的剩余。
  • 扩展欧几里得算法
    • "扩展"这意味着该算法不仅保留了欧几里得算法的核心——求最大公约数,还具备欧几里得算法没有的功能——求解贝祖等式
    • 63034CAC1505F10281E2D091850E210D.png

算法正确行证明

D5A82BA948EADC547D5A027E2006206D.jpg

实验设计

文件组成

image.png

  • main.c : 控制流程如下:

    1. 素数p:Got first prime factor, p = 9949 …
    2. 素数q:Got second prime factor, q = 4931 …
    3. n = p*q: Got modulus, n = pq = 49058519 …
    4. φ(n)=(p-1)(q-1):Got totient, phi = 49043640 …
    5. 选择与φ(n)互质的整数e:Chose public exponent, e = 161
    6. Public key is (161, 49058519) …
    7. 计算e对于φ(n)的模反元素d:Calculated private exponent, d = 5178521
    8. Private key is (5178521, 49058519) …
    9. Opening file “TestText.txt” for reading
      File “TestText.txt” read successfully, [length] bytes read. Encoding byte stream in chunks of [3\2\1] bytes
    10. 加密:Encoding finished successfully …
    11. 解密:Decoding encoded message …
    12. 加密速度:t_encode = 978 ms v_encode = 15.79755 Byte/ms
    13. 解密速度:t_decode = 423 ms v_decode = 36.52482 Byte/ms
      Finished RSA demonstration!
  • RSA.c: 各个功能实现

  • RSA.h: 头文件集合

函数介绍

获取素数
int randPrime(int n) {
	int prime = rand() % n;
	n += n % 2; 
	prime += 1 - prime % 2;
	while(1) {
		if(probablePrime(prime, ACCURACY)) return prime;
		prime = (prime + 2) % n;
	}
}

使用:p = randPrime(SINGLE_MAX);
描述:
该素数小于n,即SINGLE_MAX = 10000(RSA.h);
n 需要是偶数,所以模包装保留了奇数;
prime是奇数
probablePrime(prime, ACCURACY)函数是用来检测这个奇数是不是素数。但是并非通过就一定是素数,ACCURACY = 5,即概率性的素数检验方法的安全系数为5.

//判断n是否为素数
int probablePrime(int n, int k) {
	if(n == 2) return 1;
	else if(n % 2 == 0 || n == 1) return 0;
	while(k-- > 0) {
		if(!solovayPrime(rand() % (n - 2) + 2, n)) return 0;
	}
	return 1;
}
//概率性的素数检验方法
int solovayPrime(int a, int n) {
	int x = jacobi(a, n);
	if(x == -1) x = n - 1;
	return x != 0 && modpow(a, (n - 1)/2, n) == x;
}
//返回雅各比符号(a, n)的值
int jacobi(int a, int n) {
	int twos, temp;
	int mult = 1;
	while(a > 1 && a != n) {
		a = a % n;
		if(a <= 1 || a == n) break;
		twos = 0;
		while(a % 2 == 0 && ++twos) a /= 2; /* Factor out multiples of 2 */
		if(twos > 0 && twos % 2 == 1) mult *= (n % 8 == 1 || n % 8 == 7) * 2 - 1;
		if(a <= 1 || a == n) break;
		if(n % 4 != 1 && a % 4 != 1) mult *= -1; /* Coefficient for flipping */
		temp = a;
		a = n;
		n = temp;
	}
	if(a == 0) return 0;
	else if(a == 1) return mult;
	else return 0; /* a == n => gcd(a, n) != 1 */
}

solovay判定算法步骤
输入:一个大于3的奇整数n和一个大于等于1的安全参数k(用于确定测试轮数)。
输出:返回n是否为素数。
算法步骤:
对i从1到k做循环做以下操作:
(1)选择一个小于n的随机数a;
(2)计算j=a^((n-1)/2) mod n;
(3)如果j != 1 或 -1,则返回n不是素数;
(4)计算Jacobi符号J(a,n)=(a/n);
(5)如果j != (a/n),则返回n不是素数;

模运算
// 求 a^b mod c
int modpow(long long a, long long b, int c) {
	int res = 1;
	while(b > 0) {
		if(b & 1) {
			res = (res * a) % c;
		}
		b = b >> 1;
		a = (a * a) % c; 
	}
	return res;
}

注意每次乘完都要取模,可以算得更快,也避免数字过大引发溢出问题。

加密与解密
int encode(int m, int e, int n) {
	return modpow(m, e, n);
}
int decode(int c, int d, int n) {
	return modpow(c, d, n);
}
选⼀个与φ(n)互质的整数e

找到一个介于 3 和 n - 1 之间的随机指数 x,使得 gcd(x, phi) = 1,这种分布非均匀

int randExponent(int phi, int n) {
	int e = rand() % n;
	while(1) {
		if(gcd(e, phi) == 1) return e;
		e = (e + 1) % n;
		if(e <= 2) e = 3;
	}
}

调用:e = randExponent(phi, EXPONENT_MAX);

计算e对于φ(n)的模反元素d

使用欧几里得扩展算法计算

int inverse(int n, int modulus) {
	int a = n, b = modulus;
	int x = 0, y = 1, x0 = 1, y0 = 0, q, temp;
	while(b != 0) {
		q = a / b;
		temp = a % b;
		a = b;
		b = temp;
		temp = x; x = x0 - q * x; x0 = temp;
		temp = y; y = y0 - q * y; y0 = temp;
	}
	if(x0 < 0) x0 += modulus;
	return x0;
}

调用:d = inverse(e, phi);

读文件部分与加密速度计算略

优化技巧

分成小块字节

//main.c
n = p * q;
if(n >> 21) bytes = 3;
else if(n >> 14) bytes = 2;
else bytes = 1;	
//RSA.c
/**
 使用公钥(指数、模数)对给定长度的消息进行编码
 结果数组的大小为 len/bytes,每个索引都是“bytes”连续字符的加密,由 m = (m1 + m2*128 + m3*128^2 + ..) 给出,
 *encoded = m^exponent mod modulus
 */
int* encodeMessage(int len, int bytes, char* message, int exponent, int modulus) {
	int *encoded = malloc((len/bytes) * sizeof(int));
	int x, i, j;
	for(i = 0; i < len; i += bytes) {
		x = 0;
		for(j = 0; j < bytes; j++) x += message[i + j] * (1 << (7 * j));
		encoded[i/bytes] = encode(x, exponent, modulus);
#ifndef MEASURE
		printf("%d ", encoded[i/bytes]);
#endif
	}
	return encoded;
}

/**
  * 使用私钥(指数、模数)解码给定长度的密文
  * 每个加密的数据包都应该代表每个 encodeMessage 的“字节”字符。
  * 返回的消息大小为 len * 字节。
 */
int* decodeMessage(int len, int bytes, int* cryptogram, int exponent, int modulus) {
	int *decoded = malloc(len * bytes * sizeof(int));
	int x, i, j;
	for(i = 0; i < len; i++) {
		x = decode(cryptogram[i], exponent, modulus);
		for(j = 0; j < bytes; j++) {
			decoded[i*bytes + j] = (x >> (7 * j)) % 128;
#ifndef MEASURE
			if(decoded[i*bytes + j] != '\0') printf("%c", decoded[i*bytes + j]);
#endif
		}
	}
	return decoded;
}

实验结果与反思

  • 某次随机结果
    p = 1693, q = 3433, n = pq = 5812069, phi = 5806944,
    e = 383 公钥 (383, 5812069) …
    d = 2789759 私钥 (2789759, 5812069) …
    File “TestText.txt” read successfully, 15450 bytes read. Encoding byte stream in chunks of 3 bytes …
    加密成功image.png
    开始解密,解密成功
    速度:
    t_encode = 1020 ms v_encode = 15.14706 Byte/ms
    t_decode = 492 ms v_decode = 31.40244 Byte/ms
    Finished RSA demonstration!

  • 还看到一种生成随机数的做法是把1-10000之间的随机数写入数组,然后每次随机选择两个。

参考文献

《密码学引论》
https://zhuanlan.zhihu.com/p/48994878
https://github.com/pantaloons/RSA
https://sandtower.blog.csdn.net/article/details/120931364

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值