JAVA数组排序后遍历速度变快

        今天刷Leecode1803. 统计异或值在范围内的数对有多少中使用暴力解法时,发现直接使用暴力法遍历数组会超时不通过,而排序后成功通过所有的样例测试。这似乎表明Java处理排序后的数组速度比未排序的数组要更快,于是怀着好奇查阅后发现确实有这样的现象,但是为什么会这样呢?具体如下:

        首先,我们来看一段 Java 代码:

/**
 * @author 沉默王二,一枚有趣的程序员
 */
public class SortArrayFasterDemo {
    public static void main(String[] args) {
        // 声明数组
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c) {
            data[c] = rnd.nextInt() % 256;
        }

        // !!! 排序后,比没有排序要快
        Arrays.sort(data);

        // 测试
        long start = System.nanoTime();
        long sum = 0;

        for (int i = 0; i < 100000; ++i)
        {
            // 循环
            for (int c = 0; c < arraySize; ++c)
            {
                if (data[c] >= 128) {
                    sum += data[c];
                }
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

这段代码非常简单,解释一下:

  • 声明一个指定长度(32768)的数组。

  • 声明一个 Random 随机数对象,种子是 0;rnd.nextInt() % 256 将会产生一个余数,余数的绝对值在 0 到 256 之间,包括 0,不包括 256,可能是负数;使用余数对数组进行填充。

  • 使用 Arrays.sort() 进行排序。

  • 通过 for 循环嵌套计算数组累加后的结果,并通过 System.nanoTime() 计算前后的时间差,精确到纳秒级。

我本机的环境是 Windows 10,内存 16 GB,CPU Intel Core i7,IDE 用的是 IntelliJ IDEA,排序后和未排序后的结果如下:

排序后:2.811633398 未排序:9.41434346

时间差还是很明显的,对吧?未排序的时候,等待结果的时候让我有一种担心:什么时候结束啊?不会结束不了吧?

读者朋友们有没有玩过火炬之光啊?一款非常经典的单机游戏,每一个场景都有一副地图,地图上有很多分支,但只有一个分支可以通往下一关;在没有刷图之前,地图是模糊的,玩家并不知道哪一条分支是正确的。

如果侥幸跑的是一条正确的分支,那么很快就能到达下一关;否则就要往回跑,寻找正确的那条分支,需要花费更多的时间,但同时也会收获更多的经验和声望。

作为一名玩过火炬之光很久的老玩家,几乎每一幅地图我都刷过很多次,刷的次数多了,地图差不多就刻进了我的脑袋,即便是一开始地图是模糊的,我也能凭借经验和直觉找到最正确的那条分支,就省了很多折返跑的时间。

读者朋友们应该注意到了,上面的代码中有一个 if 分支——if (data[c] >= 128),也就是说,如果数组中的值大于等于 128,则对其进行累加,否则跳过。

那这个代码中的分支就好像火炬之光中的地图分支,如果处理器能够像我一样提前预判,那累加的操作就会快很多,对吧?

处理器的内部结构我是不懂的,但它应该和我的大脑是类似的,遇到 if 分支的时候也需要停下来,猜一猜,到底要不要继续,如果每次都猜对,那显然就不需要折返跑,浪费时间。

这就是传说中的分支预测!

我需要刷很多次图才能正确地预测地图上的路线,处理器需要排序才能提高判断的准确率

计算机发展了这么多年,已经变得非常非常聪明,对于条件的预测通常能达到 90% 以上的命中率。但是,如果分支是不可预测的,那处理器也无能为力。

排序后花费的时间少,未排序花费的时间多,罪魁祸首就在 if 语句上。

if (data[c] >= 128) {
    sum += data[c];
}

数组中的值是均匀分布的(-255 到 255 之间),至于是怎么均匀分布的,我们暂且不管,反正由 Random 类负责。

为了方便讲解,我们暂时忽略掉负数的那一部分,从 0 到 255 说起。

来看经过排序后的数据:

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

       = NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT

N 是小于 128 的,将会被 if 条件过滤掉;T 是将要累加到 sum 中的值。

再来看未排序的数据:

data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, 133, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T,   N  ...

       = TTNTTTTNTNNTTTN ...   

完全没有办法预测。

对比过后,就能发现,排序后的数据在遇到分支预测的时候,能够轻松地过滤掉 50% 的数据,对吧?是有规律可循的。

那假如说不想排序,又想节省时间,有没有办法呢?

如果你直接问我的话,我肯定毫无办法,两手一摊,一副无奈脸。不过,Stack Overflow 以上帝视角给出了答案。

把:

if (data[c] >= 128) {
    sum += data[c];
}

更换为:

int t = (data[c] - 128) >> 31;
sum += ~t & data[c];

通过位运算消除了 if 分支(并不完全等同),但我测试了一下,计算后的 sum 结果是相同的。

/**
 * @author 沉默王二,一枚有趣的程序员
 */
public class SortArrayFasterDemo {
    public static void main(String[] args) {
        // 声明数组
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random();
        for (int c = 0; c < arraySize; ++c) {
            data[c] = rnd.nextInt() % 256;
        }

        // 测试
        long start = System.nanoTime();
        long sum = 0;

        for (int i = 0; i < 100000; ++i)
        {
            // 循环
            for (int c = 0; c < arraySize; ++c)
            {
                if (data[c] >= 128) {
                    sum += data[c];
                }
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);

        // 测试
        long start1 = System.nanoTime();
        long sum1 = 0;

        for (int i = 0; i < 100000; ++i)
        {
            // 循环
            for (int c = 0; c < arraySize; ++c)
            {
                int t = (data[c] - 128) >> 31;
                sum1 += ~t & data[c];
            }
        }

        System.out.println((System.nanoTime() - start1) / 1000000000.0);
        System.out.println("sum1 = " + sum1);
    }
}

输出结果如下所示:

8.734795196
sum = 156871800000
1.596423307
sum1 = 156871800000

数组累加后的结果是相同的,但时间上仍然差得非常多,这说明时间确实耗在分支预测上——如果数组没有排序的话。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值