人脸识别项目
安装openCV
安装包
入门级教程:
推荐 python3.8 +pycharm+ anaconda
需要安装pandas numpy 和 openCV
装openCV比较烦
Mac电脑版:
首先用anaconda创建一个虚拟环境,专门用于放包
依次操作是
1.选择 环境
2. 创建 新环境
3. 在新环境 选择 unstalled 在 search框里 搜索numpy 和 pandas分别安装
注意:
这里输入opencv安装的时候,会报一个错误,说什么python版本的问题,有2.7有3.8什么的
反正我没解决。
我才用了自己从 镜像网站上下载自己所需要的包,然后放到我虚拟环境的环境内。
opencv镜像包网站如下
https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/
ctrl +F 快捷键搜索cp38
cp38代表 python3.8版本对应的一些包
你们可以类比python3.6 搜索 cp36等类似。
这里我选择的 macsx 版本下载
window或linux朋友,选择自己的版本,别跟着我选。
下载下来之后,需要到我之前创建的虚拟环境里面找到,pip的安装包所在地,把这个
opencv_python-3.4.10.35-cp38-cp38-macosx_10_9_x86_64.whl
放进去。
路径为:
/opt/anaconda3/envs/python3/lib/python3.8/site-packages/opencv_python-3.4.10.35-cp38-cp38-macosx_10_9_x86_64.whl
自己找到放进去就好了
放进去之后,通过终端打开虚拟环境
我的虚拟环境名字叫 python3
所以我进入我的虚拟环境是在终端输入
activate /opt/anaconda3/envs/python3
activate 能将我们引入anaconda设定的虚拟环境中, 如果你后面什么参数都不加那么会进入anaconda自带的base环境,
conda env list
查看当前进入的虚拟环境的名字
进入虚拟环境python3中,之后,输入
pip install /opt/anaconda3/envs/python3/lib/python3.8/site-packages/opencv_python-3.4.10.35-cp38-cp38-macosx_10_9_x86_64.whl
就好了
pip install 后面是我们 下载下来的文件存放的位置。但是这个文件我们把它专门放在opt/anaconda3/envs/python3/lib/python3.8/site-packages/这个路径的文件夹内了。
关于 anaconda虚拟环境的相关命令,总结如下
创建一个名为python38的环境,指定Python版本是3.8
conda create --name python38 python=3.8
安装好后,使用activate激活某个环境
activate python38
激活后,会发现terminal输入的地方多了python38的字样,实际上,此时系统做的事情就是把默认2.7环境从PATH中去除,再把3.8对应的命令加入PATH
想返回默认的python 2.7环境,运行
deactivate python38
删除一个已有的环境
conda remove --name python38 --all
安装第三方包
conda install xxx
或者
pip install xxx
卸载第三方包
conda remove xxx
或者
pip uninstall xxx
查看环境包信息
conda list
后面还有许多,我没用到,也就没提炼出来
附赠信息来源:
https://www.cnblogs.com/singleYao/p/13475709.html
https://blog.csdn.net/my_brother/article/details/107973423?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link
感谢作者,大家可以去原链接看
下面我放一下代码
读取图片
# 导入CV模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 显示图片
cv.imshow('read_img', img)
# 等待
cv.waitKey(0) # 0代表会无限等待下去
# 释放内存
cv.destroyWindow()
灰度转换
# 导入CV模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 灰度转换
'''第一个参数是图片,第二个参数是什么颜色(这里是将图片转换成灰色)'''
gray_img = cv.cvtColor(img, cv.COLOR_BGRA2GRAY)
# 显示灰度图片
cv.imshow('gray', gray_img)
# 保存灰度图片
cv.imwrite('gray_face1.jpg', gray_img)
# 等待
cv.waitKey(0) # 0代表会无限等待下去
# 释放内存
cv.destroyWindow()
修改图片尺寸
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 修改尺寸
resize_img = cv.resize(img, dsize=(200, 200))
# 显示原图
cv.imshow('img', img)
# 显示修改后的图片
cv.imshow('resize_img', resize_img)
# 打印原图尺寸大小
print('未修改', img.shape)
# 打印修改后的图片大小
print('修改后', resize_img.shape)
# 按 键盘q键退出
while True:
if ord('q') == cv.waitKey(0):
break
cv.destroyWindow()
# 原尺寸 936x1024 修改为 200x200 后面3位rgd是三个通道的意思
# 未修改 (936, 1024, 3)
# 修改后 (200, 200, 3)
绘制矩阵
import cv2 as cv
# 读取图片
img = cv.imread('face3.jpg')
# 坐标
x, y, w, h = 100, 100, 100, 100
# 绘制矩形
'''第一个参数:在哪张图片上绘制矩形;
第二个参数:起始点和长宽;
第三个参数:颜色 b g r 蓝色 绿色 红色
第四个参数:宽度q
'''
cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=1)
# 绘制圆形
'''图片,中心,半径,颜色,宽度'''
cv.circle(img, center=(x + w, y + h), radius=100, color=(255, 0, 0), thickness=2)
# 按 键盘q键退出
# 绘制图像
cv.imshow('img', img)
while True:
if ord('q') == cv.waitKey(0):
break
cv.destroyWindow()
人脸检测
import cv2 as cv
def face_detect_demo():
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 加载分类器 # 调用opencv中已经训练好的,方便
face_detect = cv.CascadeClassifier(
'/opt/anaconda3/envs/python3/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
'''第一个参数:图像;
第二个参数:每次遍历之后,缩放倍数1.01;
第三个参数:检测这个地方 5次之后都有人脸,再确认
第四个参数:0表示默认,暂时不用管
第五个和第六个参数:minsize 和 maxsize 是人脸最小多小,最大多大。
# 人脸大小在 100x100 到 300x300之间
'''
face = face_detect.detectMultiScale(gray, 1.01, 5, 0, (100, 100), (300, 300))
for x, y, w, h in face:
cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
cv.imshow('result', img)
# 读取图片
img = cv.imread('face5.jpg')
# 检测函数
face_detect_demo()
# 等待
while True:
if ord('q') == cv.waitKey(0):
break
# 释放内存
cv.destroyWindow()
检测多个人脸
#导入cv模块
import cv2 as cv
#检测函数
def face_detect_demo():
gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
face_detect = cv.CascadeClassifier('/opt/anaconda3/envs/opencv/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_default.xml')
face = face_detect.detectMultiScale(gary)
for x,y,w,h in face:
cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
cv.imshow('result',img)
#读取图像`在这里插入代码片`
img = cv.imread('face2.jpg')
#检测函数
face_detect_demo()
#等待
while True:
if ord('q') == cv.waitKey(0):
break
#释放内存
cv.destroyAllWindows()
视频检测
def face_detect_demo(img):
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 加载分类器 # 调用opencv中已经训练好的,方便
face_detect = cv.CascadeClassifier(
'/opt/anaconda3/envs/python3/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
'''第一个参数:图像;
第二个参数:每次遍历之后,缩放倍数1.01;
第三个参数:检测这个地方 5次之后都有人脸,再确认
第四个参数:0表示默认,暂时不用管
第五个和第六个参数:minsize 和 maxsize 是人脸最小多小,最大多大。 一般来说,不写这两个参数
# 人脸大小在 100x100 到 300x300之间
'''
face = face_detect.detectMultiScale(gray, 1.01, 5)
# face = face_detect.detectMultiScale(gray, 1.01, 5, 0, (100, 100), (300, 300))
for x, y, w, h in face:
cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
cv.imshow('result', img)
# 读取摄像头
'''这里参数0表示采用默认摄像头'''
# 这里尝试让其读取视频
# cap = cv.VideoCapture('t1.mp4')
cap = cv.VideoCapture(0)
while True:
# 每一帧的图像: 第一个参数视频自己,第二个是当前帧数
flag, frame = cap.read()
# 如果读取不到,就结束
if not flag:
break
# 有的话,就去识别当前帧数 frame
face_detect_demo(frame)
# 这里的wairKey里面的参数是可以调节,应该是每隔 数字 截取一张???
if ord('q') == cv.waitKey(1):
break
# 释放内存
cv.destroyWindow()
# 释放摄像头
cap.release()
拍照保存
import cv2 as cv
'''
这一环节的关键:信息录入
需要去把 识别的人脸 提前进入录入,方便下一次计算机判断这个人是谁。
'''
# 摄像头
cap = cv.VideoCapture(0)
flag = 1
num = 1
while (cap.isOpened()): # 检测是否在开启状态
ret_flag, Vshow = cap.read() # 得到每一帧的图像
cv.imshow("Capture_Test", Vshow) # 显示图像
k = cv.waitKey(1) & 0xFF # 按键判断
# 当检测到当前键盘按下s的时候,保存图片
if k == ord('s'): # 保存
# 命名规则: 路径+编号+人名(提前记录好的)+图片格式
cv.imwrite("/Users/zzz/Desktop/dl/opencv/data/jm/" + str(num) + '.name' + ".jpg", Vshow)
print("success to save" + str(num) + ".jpg")
print("-" * 50)
num += 1
elif k == ord(' '): # 退出 # 空格键 跳出循环
break
# 释放摄像头
cap.release()
# 释放内存
cv.destroyWindow()
训练数据
import os
import cv2
from PIL import Image
import numpy as np
def getImageAndLabel(path):
# 储存人脸数据
facesSamples = []
# 储存姓名数据
ids = []
# 储存图片信息(通过路径将 图片全部存储到变量imagePaths中)
imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
# 加载分类器
face_detector = cv2.CascadeClassifier(
'/opt/anaconda3/envs/python3/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
# 遍历列表中的图片(保存图片和人的对应关系)
for imagePath in imagePaths:
# 打开图片,灰度化PIL有九种不同的模式:1(黑白:0和1),L(灰度:像素点0-255),P,RGBA,CMYK,YCbCr,I,F。
PIL_img = Image.open(imagePath).convert('L') # 将图片转换为数字
# 将图像转化为数组,以黑白深浅
img_numpy = np.array(PIL_img, 'uint8')
# 获取图片人脸特征(通过人脸检测分配器,仅获取人脸部分)
faces = face_detector.detectMultiScale(img_numpy)
# 获取每张图片的id 和 姓名
id = int(os.path.split(imagePath)[1].split('.')[0])
# 预防无面容照片 # 将每一个人的脸部图片 和 对应id进行添加
for x, y, w, h in faces:
ids.append(id)
facesSamples.append(img_numpy[y:y + h, x:x + w])
# 打印面部特征 和 id
print("id:", id)
print("fs:", facesSamples)
return facesSamples, ids
if __name__ == '__main__':
# 图片路径
path = '/Users/zzz/Desktop/dl/opencv/data/jm/'
# 获取图片数组 和 id标签数组 和 姓名
faces, ids = getImageAndLabel(path)
# 加载识别器
recognizer = cv2.face.LBPHFaceRecognizer_create()
# 训练(整合图片和人的信息)
recognizer.train(faces, np.array(ids))
# 保存文件
recognizer.write('trainer/trainer/yml')
人脸识别
import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib
#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')
names=[]
warningtime = 0
def md5(str):
import hashlib
m = hashlib.md5()
m.update(str.encode("utf8"))
return m.hexdigest()
statusStr = {
'0': '短信发送成功',
'-1': '参数不全',
'-2': '服务器空间不支持,请确认支持curl或者fsocket,联系您的空间商解决或者更换空间',
'30': '密码错误',
'40': '账号不存在',
'41': '余额不足',
'42': '账户已过期',
'43': 'IP地址限制',
'50': '内容含有敏感词'
}
def warning():
smsapi = "http://api.smsbao.com/"
# 短信平台账号
user = '13******10'
# 短信平台密码
password = md5('*******')
# 要发送的短信内容
content = '【报警】\n原因:检测到未知人员\n地点:xxx'
# 要发送短信的手机号码
phone = '*******'
data = urllib.parse.urlencode({'u': user, 'p': password, 'm': phone, 'c': content})
send_url = smsapi + 'sms?' + data
response = urllib.request.urlopen(send_url)
the_page = response.read().decode('utf-8')
print(statusStr[the_page])
#准备识别的图片
def face_detect_demo(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度
face_detector=cv2.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
#face=face_detector.detectMultiScale(gray)
for x,y,w,h in face:
cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
# 人脸识别
ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
#print('标签id:',ids,'置信评分:', confidence)
if confidence > 80:
global warningtime
warningtime += 1
if warningtime > 100:
warning()
warningtime = 0
cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
else:
cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
cv2.imshow('result',img)
#print('bug:',ids)
def name():
path = './data/jm/'
#names = []
imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
for imagePath in imagePaths:
name = str(os.path.split(imagePath)[1].split('.',2)[1])
names.append(name)
cap=cv2.VideoCapture('1.mp4')
name()
while True:
flag,frame=cap.read()
if not flag:
break
face_detect_demo(frame)
if ord(' ') == cv2.waitKey(10):
break
cv2.destroyAllWindows()
cap.release()
最后附赠一下 代码包的百度云链接:
1.人脸识别
链接: https://pan.baidu.com/s/1FZHtVbETXTwkrkSNJ7qksw
密码: 0665
和这个的视频
https://www.bilibili.com/video/BV1Lq4y1Z7dm?p=13
目前还存在问题:
opencv装好之后,cv.face这里存在问题不能正常执行