简单的 人脸识别项目(号称一天搞定)

17 篇文章 13 订阅
16 篇文章 4 订阅

人脸识别项目

安装openCV

安装包
入门级教程:
推荐 python3.8 +pycharm+ anaconda

需要安装pandas numpy 和 openCV
装openCV比较烦
Mac电脑版:
首先用anaconda创建一个虚拟环境,专门用于放包
依次操作是
1.选择 环境
2. 创建 新环境
3. 在新环境 选择 unstalled 在 search框里 搜索numpy 和 pandas分别安装
在这里插入图片描述
注意:
这里输入opencv安装的时候,会报一个错误,说什么python版本的问题,有2.7有3.8什么的
反正我没解决。
我才用了自己从 镜像网站上下载自己所需要的包,然后放到我虚拟环境的环境内。
opencv镜像包网站如下

https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/

ctrl +F 快捷键搜索cp38
cp38代表 python3.8版本对应的一些包
你们可以类比python3.6 搜索 cp36等类似。
这里我选择的 macsx 版本下载
window或linux朋友,选择自己的版本,别跟着我选。
在这里插入图片描述
下载下来之后,需要到我之前创建的虚拟环境里面找到,pip的安装包所在地,把这个
opencv_python-3.4.10.35-cp38-cp38-macosx_10_9_x86_64.whl
放进去。
路径为:
/opt/anaconda3/envs/python3/lib/python3.8/site-packages/opencv_python-3.4.10.35-cp38-cp38-macosx_10_9_x86_64.whl

自己找到放进去就好了
放进去之后,通过终端打开虚拟环境

我的虚拟环境名字叫 python3
所以我进入我的虚拟环境是在终端输入

activate /opt/anaconda3/envs/python3

activate 能将我们引入anaconda设定的虚拟环境中, 如果你后面什么参数都不加那么会进入anaconda自带的base环境,

conda env list

查看当前进入的虚拟环境的名字

进入虚拟环境python3中,之后,输入

pip install /opt/anaconda3/envs/python3/lib/python3.8/site-packages/opencv_python-3.4.10.35-cp38-cp38-macosx_10_9_x86_64.whl 

就好了
pip install 后面是我们 下载下来的文件存放的位置。但是这个文件我们把它专门放在opt/anaconda3/envs/python3/lib/python3.8/site-packages/这个路径的文件夹内了。

关于 anaconda虚拟环境的相关命令,总结如下

创建一个名为python38的环境,指定Python版本是3.8

conda create --name python38 python=3.8

安装好后,使用activate激活某个环境

activate python38

激活后,会发现terminal输入的地方多了python38的字样,实际上,此时系统做的事情就是把默认2.7环境从PATH中去除,再把3.8对应的命令加入PATH


想返回默认的python 2.7环境,运行

deactivate python38

删除一个已有的环境

conda remove --name python38 --all

安装第三方包

conda install xxx

或者

pip install xxx

卸载第三方包

conda remove xxx

或者

pip uninstall xxx

查看环境包信息

conda list

后面还有许多,我没用到,也就没提炼出来
附赠信息来源:
https://www.cnblogs.com/singleYao/p/13475709.html
https://blog.csdn.net/my_brother/article/details/107973423?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link
感谢作者,大家可以去原链接看

下面我放一下代码

读取图片

# 导入CV模块
import cv2 as cv

# 读取图片
img = cv.imread('face1.jpg')

# 显示图片
cv.imshow('read_img', img)
# 等待
cv.waitKey(0)  # 0代表会无限等待下去
# 释放内存
cv.destroyWindow()

灰度转换

# 导入CV模块
import cv2 as cv
# 读取图片
img = cv.imread('face1.jpg')
# 灰度转换
'''第一个参数是图片,第二个参数是什么颜色(这里是将图片转换成灰色)'''
gray_img = cv.cvtColor(img, cv.COLOR_BGRA2GRAY)
# 显示灰度图片
cv.imshow('gray', gray_img)
# 保存灰度图片
cv.imwrite('gray_face1.jpg', gray_img)
# 等待
cv.waitKey(0)  # 0代表会无限等待下去
# 释放内存
cv.destroyWindow()

修改图片尺寸

import cv2 as cv

# 读取图片
img = cv.imread('face1.jpg')

# 修改尺寸
resize_img = cv.resize(img, dsize=(200, 200))
# 显示原图
cv.imshow('img', img)
# 显示修改后的图片
cv.imshow('resize_img', resize_img)
# 打印原图尺寸大小
print('未修改', img.shape)
# 打印修改后的图片大小
print('修改后', resize_img.shape)

# 按 键盘q键退出
while True:
    if ord('q') == cv.waitKey(0):
        break
cv.destroyWindow()

# 原尺寸 936x1024 修改为 200x200  后面3位rgd是三个通道的意思
# 未修改 (936, 1024, 3)
# 修改后 (200, 200, 3)

绘制矩阵

import cv2 as cv

# 读取图片
img = cv.imread('face3.jpg')

# 坐标
x, y, w, h = 100, 100, 100, 100

# 绘制矩形
'''第一个参数:在哪张图片上绘制矩形;
    第二个参数:起始点和长宽;
    第三个参数:颜色  b g r 蓝色 绿色 红色
    第四个参数:宽度q
    '''
cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=1)
# 绘制圆形
'''图片,中心,半径,颜色,宽度'''
cv.circle(img, center=(x + w, y + h), radius=100, color=(255, 0, 0), thickness=2)

# 按 键盘q键退出

# 绘制图像
cv.imshow('img', img)

while True:
    if ord('q') == cv.waitKey(0):
        break
cv.destroyWindow()

人脸检测

import cv2 as cv
def face_detect_demo():
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # 加载分类器  # 调用opencv中已经训练好的,方便
    face_detect = cv.CascadeClassifier(
        '/opt/anaconda3/envs/python3/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    '''第一个参数:图像;
    第二个参数:每次遍历之后,缩放倍数1.01;
    第三个参数:检测这个地方 5次之后都有人脸,再确认
    第四个参数:0表示默认,暂时不用管
    第五个和第六个参数:minsize 和 maxsize 是人脸最小多小,最大多大。 
    # 人脸大小在 100x100 到 300x300之间
    '''
    face = face_detect.detectMultiScale(gray, 1.01, 5, 0, (100, 100), (300, 300))
    for x, y, w, h in face:
        cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
    cv.imshow('result', img)

# 读取图片
img = cv.imread('face5.jpg')

# 检测函数
face_detect_demo()

# 等待
while True:
    if ord('q') == cv.waitKey(0):
        break
# 释放内存
cv.destroyWindow()

检测多个人脸

#导入cv模块
import cv2 as cv
#检测函数
def face_detect_demo():
    gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    face_detect = cv.CascadeClassifier('/opt/anaconda3/envs/opencv/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_default.xml')
    face = face_detect.detectMultiScale(gary)
    for x,y,w,h in face:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
    cv.imshow('result',img)

#读取图像`在这里插入代码片`
img = cv.imread('face2.jpg')
#检测函数
face_detect_demo()
#等待
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

视频检测

def face_detect_demo(img):
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    # 加载分类器  # 调用opencv中已经训练好的,方便
    face_detect = cv.CascadeClassifier(
        '/opt/anaconda3/envs/python3/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    '''第一个参数:图像;
    第二个参数:每次遍历之后,缩放倍数1.01;
    第三个参数:检测这个地方 5次之后都有人脸,再确认
    第四个参数:0表示默认,暂时不用管
    第五个和第六个参数:minsize 和 maxsize 是人脸最小多小,最大多大。 一般来说,不写这两个参数
    # 人脸大小在 100x100 到 300x300之间  
    '''
    face = face_detect.detectMultiScale(gray, 1.01, 5)
    # face = face_detect.detectMultiScale(gray, 1.01, 5, 0, (100, 100), (300, 300))
    for x, y, w, h in face:
        cv.rectangle(img, (x, y), (x + w, y + h), color=(0, 0, 255), thickness=2)
    cv.imshow('result', img)


# 读取摄像头
'''这里参数0表示采用默认摄像头'''
# 这里尝试让其读取视频
# cap = cv.VideoCapture('t1.mp4')
cap = cv.VideoCapture(0)

while True:
    # 每一帧的图像: 第一个参数视频自己,第二个是当前帧数
    flag, frame = cap.read()
    # 如果读取不到,就结束
    if not flag:
        break
    # 有的话,就去识别当前帧数 frame
    face_detect_demo(frame)
    # 这里的wairKey里面的参数是可以调节,应该是每隔 数字 截取一张???
    if ord('q') == cv.waitKey(1):
        break
# 释放内存
cv.destroyWindow()
# 释放摄像头
cap.release()

拍照保存

import cv2 as cv

'''
这一环节的关键:信息录入
需要去把 识别的人脸 提前进入录入,方便下一次计算机判断这个人是谁。
'''
# 摄像头
cap = cv.VideoCapture(0)

flag = 1
num = 1

while (cap.isOpened()):  # 检测是否在开启状态
    ret_flag, Vshow = cap.read()  # 得到每一帧的图像
    cv.imshow("Capture_Test", Vshow)  # 显示图像
    k = cv.waitKey(1) & 0xFF  # 按键判断
    # 当检测到当前键盘按下s的时候,保存图片
    if k == ord('s'):  # 保存
        # 命名规则: 路径+编号+人名(提前记录好的)+图片格式
        cv.imwrite("/Users/zzz/Desktop/dl/opencv/data/jm/" + str(num) + '.name' + ".jpg", Vshow)
        print("success to save" + str(num) + ".jpg")
        print("-" * 50)
        num += 1
    elif k == ord(' '):  # 退出   # 空格键 跳出循环
        break
# 释放摄像头
cap.release()
# 释放内存
cv.destroyWindow()

训练数据

import os
import cv2
from PIL import Image
import numpy as np


def getImageAndLabel(path):
    # 储存人脸数据
    facesSamples = []
    # 储存姓名数据
    ids = []
    # 储存图片信息(通过路径将 图片全部存储到变量imagePaths中)
    imagePaths = [os.path.join(path, f) for f in os.listdir(path)]
    # 加载分类器
    face_detector = cv2.CascadeClassifier(
        '/opt/anaconda3/envs/python3/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    # 遍历列表中的图片(保存图片和人的对应关系)
    for imagePath in imagePaths:
        # 打开图片,灰度化PIL有九种不同的模式:1(黑白:0和1),L(灰度:像素点0-255),P,RGBA,CMYK,YCbCr,I,F。
        PIL_img = Image.open(imagePath).convert('L')  # 将图片转换为数字
        # 将图像转化为数组,以黑白深浅
        img_numpy = np.array(PIL_img, 'uint8')
        # 获取图片人脸特征(通过人脸检测分配器,仅获取人脸部分)
        faces = face_detector.detectMultiScale(img_numpy)
        # 获取每张图片的id 和 姓名
        id = int(os.path.split(imagePath)[1].split('.')[0])
        # 预防无面容照片 # 将每一个人的脸部图片 和 对应id进行添加
        for x, y, w, h in faces:
            ids.append(id)
            facesSamples.append(img_numpy[y:y + h, x:x + w])
    # 打印面部特征 和 id
    print("id:", id)
    print("fs:", facesSamples)
    return facesSamples, ids


if __name__ == '__main__':
    # 图片路径
    path = '/Users/zzz/Desktop/dl/opencv/data/jm/'
    # 获取图片数组 和 id标签数组 和 姓名
    faces, ids = getImageAndLabel(path)
    # 加载识别器
    recognizer = cv2.face.LBPHFaceRecognizer_create()
    # 训练(整合图片和人的信息)
    recognizer.train(faces, np.array(ids))
    # 保存文件
    recognizer.write('trainer/trainer/yml')

人脸识别

import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib

#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainer.yml')
names=[]
warningtime = 0

def md5(str):
    import hashlib
    m = hashlib.md5()
    m.update(str.encode("utf8"))
    return m.hexdigest()

statusStr = {
    '0': '短信发送成功',
    '-1': '参数不全',
    '-2': '服务器空间不支持,请确认支持curl或者fsocket,联系您的空间商解决或者更换空间',
    '30': '密码错误',
    '40': '账号不存在',
    '41': '余额不足',
    '42': '账户已过期',
    '43': 'IP地址限制',
    '50': '内容含有敏感词'
}


def warning():
    smsapi = "http://api.smsbao.com/"
    # 短信平台账号
    user = '13******10'
    # 短信平台密码
    password = md5('*******')
    # 要发送的短信内容
    content = '【报警】\n原因:检测到未知人员\n地点:xxx'
    # 要发送短信的手机号码
    phone = '*******'

    data = urllib.parse.urlencode({'u': user, 'p': password, 'm': phone, 'c': content})
    send_url = smsapi + 'sms?' + data
    response = urllib.request.urlopen(send_url)
    the_page = response.read().decode('utf-8')
    print(statusStr[the_page])

#准备识别的图片
def face_detect_demo(img):
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度
    face_detector=cv2.CascadeClassifier('D:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
    face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
    #face=face_detector.detectMultiScale(gray)
    for x,y,w,h in face:
        cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
        # 人脸识别
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
        #print('标签id:',ids,'置信评分:', confidence)
        if confidence > 80:
            global warningtime
            warningtime += 1
            if warningtime > 100:
               warning()
               warningtime = 0
            cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result',img)
    #print('bug:',ids)

def name():
    path = './data/jm/'
    #names = []
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    for imagePath in imagePaths:
       name = str(os.path.split(imagePath)[1].split('.',2)[1])
       names.append(name)


cap=cv2.VideoCapture('1.mp4')
name()
while True:
    flag,frame=cap.read()
    if not flag:
        break
    face_detect_demo(frame)
    if ord(' ') == cv2.waitKey(10):
        break
cv2.destroyAllWindows()
cap.release()

最后附赠一下 代码包的百度云链接:
1.人脸识别
链接: https://pan.baidu.com/s/1FZHtVbETXTwkrkSNJ7qksw
密码: 0665
和这个的视频
https://www.bilibili.com/video/BV1Lq4y1Z7dm?p=13

目前还存在问题:
opencv装好之后,cv.face这里存在问题不能正常执行

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值