GNN
chengsen.ren
欢迎关注公众号:图网络与机器学习
展开
-
总结|谷歌用GNN提高ETAs准确率
总结|谷歌用GNN提高ETAs准确率从Deep Mind的博客看到他们关于交通预测的文章,看完后整理一下。文章很粗糙,只给了一个大体的思路。这篇文章是Deep Mind和Google Maps合作的工作,主要是提高预计到达时间(ETAs)的准确率。主要核心思想是:把道路切割成一个个的路段,每个路段视为一个节点,路段的相对位置构成节点间的边,形成路网的一个子图(文章称作Supersegments,超级路段)然后使用GNN模型来对超级路段的行程时间进行预估。原文链接:https://d原创 2020-09-05 13:13:00 · 393 阅读 · 0 评论 -
从上到下|图网络开放数据集
从上到下|图网络开放数据集很多学者和机构发布了许多与图相关的任务,以测试各种GNN的性能。这些任务一般都会提供数据集。按照任务分类,可以把数据集分成以下几类:引文网络生化图社交网络知识图谱开源数据集仓库参考资料:A Comprehensive Survey on Graph Neural NetworksIntroduction to Graph Neural Networks引文网络Pubmed/Cora/Citeseer引文网络,节点为论文、边为论文间的引用关系。这原创 2020-09-04 12:14:22 · 5581 阅读 · 1 评论 -
QA派|GNN工业应用-PinSAGE
QA派|GNN工业应用-PinSAGE文章目录QA派|GNN工业应用-PinSAGE基本概念pins是什么意思?PinSAGE论文中的数据集有多大?PinSAGE使用的是什么图?PinSAGE的任务是什么?PinSAGE有特别区分pin节点和board节点吗?和GraphSAGE相比,PinSAGE改进了什么?PinSAGE使用多大的计算资源?PinSAGE和node2vec、DeepWalk这些有啥区别?聚合函数PinSAGE的单层聚合过程是怎样的?为什么要将邻居节点的聚合embedding和当前节点原创 2020-08-23 23:33:50 · 372 阅读 · 0 评论 -
QA派|初识GraphSAGE
QA派|初识GraphSAGE图网络中节点的低维embedding,对于各类预测、图分析任务都非常有用;相对于要求一整张图作为输入的GCN,能分批训练的GraphSAGE在工业界似乎更加常用。本文通过问答的形式,来对GraphSAGE有个初步的理解。QA派,用问答的形式为加深对模型、问题的理解,同时也有助于不断深入。文章目录QA派|初识GraphSAGE基本概念有了GCN为啥还要GraphSAGE?GraphSAGE有什么优点?GraphSAGE的基本思路是什么?跳数(hops)、搜索深度(se原创 2020-08-15 19:53:09 · 1127 阅读 · 0 评论 -
从上到下,一文带你看全所有GNN分类
从上到下,一文带你看全所有GNN分类一般来说,我喜欢从上往下的角度来入门一个方向,毕竟入门的秘诀就是从广到深,而不至于在一开始就只见枝叶不见森林。先在心中有个谱,然后再慢慢奏好每个音符,这样就会出来美妙的旋律。我们挑选了清华大学刘知远老师的《Introduction to Graph Neural Networks》和他们的一份综述《Graph Neural Networks: A Review of Methods and Applications》作为参考。优秀的综述很多,我可能也参考了其他,但主要原创 2020-08-08 00:15:09 · 3342 阅读 · 1 评论