【SSL】1052开心的金明(2006年分区联赛普级组之二)(01背包)
Time Limit:1000MS
Memory Limit:65536K
Description
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N 元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N 元。于是,他把每件物品规定了一个重要度,分为5 等:用整数1~5 表示,第5 等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N 元(可以等于N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。设第j 件物品的价格为v[j],重要度为w[j],共选中了k 件物品,编号依次为,j1,j2,……jk ,则所求的总和为:v[j1]*w[j1]+v[j2]*w[j2]+……+v[jk]w[jk] (其中为乘号)
请你帮助金明设计一个满足要求的购物单。
Input
输入的第1 行,为两个正整数,用一个空格隔开:
N m(其中N(<30000)表示总钱数,m(<25)为希望购买物品的个数。)
从第2 行到第m+1 行,第j 行给出了编号为j-1的物品的基本数据,每行有2 个非负整数
v p (其中v 表示该物品的价格(v≤10000),p 表示该物品的重要度(1~5))
Output
输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<100000000)
Sample Input
1000 5
800 2
400 5
300 5
400 3
200 2
Sample Output
3900
思路
这道题其实就是一个01背包问题(采药01背包)总钱数就是背包容量,价格为物品重量,物品的价格与重要度乘积为价值。状态转移方程为f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+w[i]*z[i]),f[0][j]=0,f[i][0]=0,1<=i<=m,1<=j<=money,m为物品数,money为总钱数。还可以压缩空间,用迭代法,只用一维数组。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdlib>
using namespace std;
int allmoney,n,money[200],zy[200],f[30010];
void input()//输入
{
int i;
scanf("%d%d",&allmoney,&n);
for(i=1;i<=n;i++)
scanf("%d%d",&money[i],&zy[i]);
return;
}
void DP()
{
int i,j;
for(i=1;i<=n;i++)//处理第i个物品
{
for(j=allmoney;j>=1;j--)//有j元钱
{
if (j>=money[i])
f[j]=max(f[j],f[j-money[i]]+money[i]*zy[i]);//状态转移方程
}
}
return;
}
int main()
{
input();
DP();
printf("%d",f[allmoney]);
return 0;
}