【SSL】1015 &【洛谷】1024一元三次方程求解_2001年分区联赛提高组第一题
Time Limit:1000MS Memory Limit:65536K
Description
有形如:
a
x
3
+
b
x
2
+
c
x
+
d
=
0
ax^3+bx^2+cx+d=0
ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。
提示:记方程f(x)=0,若存在2个数x1和x2,且x1
Input
Output
Sample Input
1 -5 -4 20
Sample Output
-2.00 2.00 5.00
思路
当已知区间(a,b)内有一个根时,用二分法求根,若区间(a,b)内有根,则必有f(a)·f(b)<0。重复执行如下的过程:
(1)若a+0.0001>b或f((a+b)/2)=0,则可确定根为(a+b)/2并退出过程;
(2)若f(a)* f((a+b)/2)<0,则由题目给出的定理可知根在区间(a,(a+b)/2)中,故对区间重复该过程;
(3)若f(a)* f((a+b)/2)>0 ,则必然有f((a+b)/2)* f(b)<0 ,根在((a+b)/2,b)中,对此区间重复该过程。
执行完毕,就可以得到精确到0.0001的根。
代码
#include<iostream>
#include<cstdio>
using namespace std;
double a,b,c,d;
double f(double x)
{
return a*x*x*x+b*x*x+c*x+d;
}
int main()
{
double i,l,r,mid;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
for(i=-100;i<=100;i+=1)
if(f(i)==0)printf("%.2lf ",i);
else if(f(i)*f(i+1)<0)
{
for(l=i,r=i+1;l+0.001<r;)
{
mid=(l+r)/2;
if(f(l)*f(mid)<0)r=mid;
else l=mid;
}
printf("%.2lf ",r);
}
return 0;
}