机器学习经典算法

函数名称均为sklearn库中的函数

1.线性回归算法:LinearRegression:

其中常用的有:Ridge:岭回归算法,MultiTaskLasso:多任务LASSO回归算法,ElasticNet:弹性网眼算法,LassoLars:LARS套索算法,OrthogonalMatchingPursuit:正交匹配追踪(OMP)算法,

BayesianRidge:贝叶斯岭回归算法,LogisticRegression:逻辑回归算法,SGDClassifier:SGD随机梯度下降算法,MutiTaskElasticNet:多任务弹性网眼算法,LARS:最小角回归算法,Perceptron:感知器算

法,PassiveAggressiveClassifier:PA被动感知算法,RANSACRegressor:鲁棒回归算法,HuberRegressor:Huber回归算法

2.朴素贝叶斯算法,Multinaomial Naive Bayes,函数名:Multinomialnb

其中常用:MultinomialNB:多项式朴素贝叶斯算法,GaussianNB:高斯朴素贝叶斯算法,BernoulliNB:伯努力朴素贝叶斯算法

3.kNN近邻算法:KNeighborsClassifier

其中常用:KNeighborsClassifier:KNN近邻算法,NearestNeighbors:最近邻算法,KNeighborsRegressor:K近邻算法,NearestCentroid:最近质心算法

4.逻辑回归算法:LogisticRegression

5.随机森林算法,Random Forest Classifier :RandomForestClassfier

其中最常用:RandomForestClassifier:随机森林算法,BaggingCClassifier:Bagging装袋算法,ExtrTreeClassifier:完全随机树算法,Adaboost:迭代算法,GradientBoostClassifier:GBT梯度Boosting算法,

GradientBoostingRegressor:梯度回归算法,VotingClassifier:投票算法

6.决策树算法,Decision Tree:tree.DecisionTreeClassifier

7.GBDT迭代决策树算法,Gradient Boosting Decision Tree,又叫MART(Multiple Additive Regession Tree):GradientBoostingClassifier

8.SVM向量机算法:SVC

其中:SVC:支持 向量机算法,LinearSVC:线性向量算法,NuSVC:Nu支持向量算法,SVR:SVR(TRpsilon)支持向量算法,NuSVR:Nu支持SVR向量算法,OneClassSVM:一类支持微向量机异常检测算法,

ll_min_c: 辅助函数,返回边界参数

9.SVM-cross向量机交叉算法:SVC

10.神经网络算法:

其中:BP神经网络算法,RBF( 径向基)神经网络算法,感知器神经网络算法,线性神经网络算法,自组织神经网络算法,反馈神经网络算法

sklearn库中nerual_network提供3中算法函数:BernoulliRBM:伯努力受限玻尔兹曼机神经网络算法,MLPClassifier:多层感知器神经网络算法,MLPRegressor:多层感知器神经网络回归算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值