- 博客(11)
- 收藏
- 关注
原创 固定收益理论(二)一网打尽利率衍生品
本文系统介绍了5种主要利率衍生工具:远期利率协议(FRA)、欧洲美元期货、SOFR期货、利率互换,以及国债期货的定价机制。FRA、欧洲美元期货、SOFR期货都是通过锁定未来远期利率规避风险。利率互换则是发挥比较优势,实现固定与浮动利率现金流交换。国债期货采用持有成本法定价,并详细推导了转换因子计算公式,分析了最便宜交割券(CTD)的选择逻辑,指出其与市场利率水平和收益率曲线形态密切相关。全文深入浅出地阐述了各类利率衍生品的定价原理和交易机制,为理解现代金融市场利率风险管理工具提供了系统框架。
2025-08-03 21:17:00
495
原创 基于二叉树模型的美式期权定价
美式期权允许持有者在到期前任意时间行权,其价值不低于欧式期权。美式期权定价采用递推公式比较立即行权与继续持有的收益。美式期权定价涉及资产复制方程、鞅停时定理、最优停时概念,最优行权时刻是期权价值等于内在价值的首次时刻。无股利支付的美式看涨期权不会提前行权,其价值等于欧式看涨期权,这可由詹森不等式证明。而美式看跌期权因不满足单系数詹森不等式,可能提前行权,因此美式看跌期权相比欧式看跌期权有一定溢价。
2025-08-03 10:30:15
591
原创 固定收益理论(一)债券定价
摘要:债券定价基于确定性现金流贴现原理,核心公式包括零息债、固定利率债和永续债估值法。关键概念区分了票面利率、市场利率和到期收益率(YTM)。利率敏感性分析通过久期(修正久期和麦考利久期)衡量一阶效应,凸度衡量二阶效应,泰勒展开式量化价格变动。随机利率模型部分介绍了Vasicek和CIR模型:Vasicek采用O-U过程描述均值回归利率,允许负利率;CIR模型通过平方根过程确保利率为正,二者均提供解析解和蒙特卡洛模拟方法。模型差异体现在利率边界条件和波动结构上,CIR更符合实际市场特征。
2025-07-13 18:55:36
761
原创 现实测度和风险中性测度的变换
金融资产定价中的现实测度与风险中性测度摘要:本文探讨了金融资产定价中的两种概率测度:现实测度(反映实际市场风险偏好)和风险中性测度(假设投资者风险中性)。现实测度下的资产收益率包含风险溢价,而风险中性测度下的收益率等于无风险利率。通过Radon-Nikodym定理可以实现测度转换,Girsanov定理则专门处理布朗运动的测度变换。风险中性定价的核心是无套利原则,其计算结果与实际市场定价一致。这种理论框架为衍生品定价提供了重要工具。
2025-06-30 21:18:49
974
原创 最小方差套期保值比率
最小方差套期保值比率的推导通过构建现货与期货组合,求解组合收益方差的最小值来确定最优对冲比率。核心步骤包括:定义现货和期货价格变量,构建组合收益函数,计算方差并对其求导优化,最终得出最小方差比率h=ρ*σS/σF。该比率与CAPM中的β系数原理一致,可用于调整系统性风险。实际应用中需考虑现货与期货的单位差异,通过价值换算确定具体合约数量。
2025-06-30 20:12:45
235
原创 Vasicek(ASRF)模型在风险加权资产(RWA)计量的应用
本文介绍了信用风险加权资产(RWA)的计算规则,重点解析了资本要求K值的计算公式。K值代表非预期损失率,其计算基于渐进单因子模型(ASRF),该模型假设违约概率受系统性风险因子和个体风险因子共同影响。通过标准正态分布假设和Copula理论,推导出覆盖99.9%风险的资本要求公式,并区分了零售与非零售风险暴露的不同计算方法。文章还涉及了期限调整因子等参数的设定原理。
2025-06-22 21:20:27
488
原创 期权定价 Black-Scholes模型
Black-Scholes模型通过微分方程刻画衍生品价格变化。首先用标准布朗运动描述资产价格随机性,逐步发展为几何布朗运动以适应金融特性。伊藤过程进一步扩展模型,引入时变参数和随机积分概念。伊藤引理作为关键工具,用于处理随机微分方程,并成功求解几何布朗运动。基于无风险组合原理,推导出Black-Scholes方程。该方程的解即为期权定价公式,模型将资产价格对数收益转化为标准正态分布,通过积分变换求解。这一框架为金融衍生品定价提供了理论基础。
2025-06-18 21:02:58
1215
原创 远期合约(Forward Contracts)原理和定价
远期合约定价模型的推导和经济含义。对于生息资产需考虑利息收入调整定价公式;对于持有成本需额外加总。远期合约在外汇上的应用即利率平价公式,体现本外币利率差异对远期汇率的影响。典型案例展示了不同场景下的具体计算方法。
2025-06-18 20:56:30
1134
原创 自定义似然函数并最优化求解——基于python的scipy.optimize.minimize
minimize提供的方法能够解决无/有约束的线性或非线性的多个决策变量目标函数的最优化问题,是解决优化问题的利器。本篇文章介绍其如何使用,并提供了代码示例。
2025-02-09 21:20:13
2217
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人