1.yarn的作用
1.负责为服务器提供运算资源
2.相当于一个分布式的操作系统,mapreduce运行在之上
架构图如 hd11
NM包括 container的appmaster,maptask,和reducetask, appmst申请资源分配任务和发送心跳容错
container管理资源 内存cpu磁盘网络
2.yarn工作机制(面试题)
hd12
3.hdfs数据存储 mapreduce数据处理和yarn资源管理(datanode,namenode)的关系
4.yarn调度器和调度算法
调度器 scheduler,cdk框架默认fair
1.FIFO 队列,先来先使用
2.容量调度器 capacity hadoop默认 yahoo开发
1.多队列
2.容量保证: 可以设置每条队列的最低资源和上限
3.灵活性: 可以暂时共享其他队列的资源
4.多租户 : 多用户共享集群,可以对单一用户占资源进行限定
执行过程
1.从root开始下面有多个队列,使用深度优先算法(树的下面的节点少的先执行)优先选择资源占用最低的队列
2.作业资源分配 请求多个任务,按优先级和任务提交数据决定哪个先执行
3.容器资源分配 优先级相同 按数据本地性原则,(先)任务和数据在同一节点--->在同一机架--->在不同节点也不在同一机架 (后)
3.公平调度器 fair (容量的升级) 多队列多租户,但是队列中公平分配资源 Qa: 全部50%,5个任务,每个10%
与容量调度器不同点: 1.容量优先选择资源利用率低的队列
公平 优先资源缺额(现在有2个任务,100%运行,又来一个任务缺额100%)比例大的
2.每个队列单独设置资源分配方式
容量: FIFO DRF(内存+cpu)
公平: FIFO FAIR(自己的公平算法) DRF
5.fair策略
1.名词 实际最小资源份额 mindshare=Min
是否饥饿 isNeedy=资源使用量<minshare //说明资源不够
资源分配比: minShareRadio =资源使用量/Max //资源缺得多分配给谁
资源使用权重比 useToweightRadio =资源使用量/权重 10/10=1 10/2=5//越大越后面执行
流程如图hd13
2.分配方式
1.不加权 第一次平分 第二次 多出来的资源/饥饿的资源数,多的分给饥饿任务...到没有资源
2.加权 第一次 按权值分 第二次 多出来的资源/饥饿任务的权重 ...,多分给饥饿任务...到没有资源
6.yarn常用命令
1.启动集群
2.命令查看状态
3.!!!非常重要 查看日志,可以查看异常,还可以查看具体哪个集群的容器的日志
yarn application -list #列出全部正在执行的
yarn application -list -appStates FINISHED #完成的
yarn logs -applicationId xxid
yarn logs -applicationId xxid -containerId xxid
#查看正在执行的任务,包含container的id
yarn applicationattempt -status xxappid
4.查看集群节点状态
yarn node -list -all
5.更新配置 改队列相关信息,可以不用重启yarn
yarn queue -status default
7.yarn生产环境核心配置参数 可以配置以下的cpu和内存参数
1.ResourceManager
2.NodeManager
3.Container
8.yarn生产环境核心参数配置
需求1g数据,统计每个单词出现次数,服务器3台,每台 4g内存4核cpu4线程
1g/128m=8MapTask 1reducetask 1个mrAppMaster
//关闭虚拟内存检查的原因,java堆没有使用linux
//预留的虚拟内存,而是自己开虚拟内存空间,导致java实际使用虚拟内存少
//改配置 cd /opt/moudle/hadoop3.3.0 的 yarn-site.xml 粘贴
<!-- 选择调度器,默认容量 -->
<property>
<description>The class to use as the resource scheduler.</description>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
<!-- ResourceManager处理调度器请求的线程数量,默认50;如果提交的任务数大于50,可以增加该值,但是不能超过3台 * 4线程 = 12线程(去除其他应用程序实际不能超过8) -->
<property>
<description>Number of threads to handle scheduler interface.</description>
<name>yarn.resourcemanager.scheduler.client.thread-count</name>
<value>8</value>
</property>
<!-- 是否让yarn自动检测硬件进行配置,默认是false,如果该节点有很多其他应用程序,建议手动配置。如果该节点没有其他应用程序,可以采用自动 -->
<property>
<description>Enable auto-detection of node capabilities such as
memory and CPU.
</description>
<name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
<value>false</value>
</property>
<!-- 是否将虚拟核数当作CPU核数,默认是false,采用物理CPU核数 -->
<property>
<description>Flag to determine if logical processors(such as
hyperthreads) should be counted as cores. Only applicable on Linux
when yarn.nodemanager.resource.cpu-vcores is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true.
</description>
<name>yarn.nodemanager.resource.count-logical-processors-as-cores</name>
<value>false</value>
</property>
<!-- 虚拟核数和物理核数乘数,默认是1.0 -->
<property>
<description>Multiplier to determine how to convert phyiscal cores to
vcores. This value is used if yarn.nodemanager.resource.cpu-vcores
is set to -1(which implies auto-calculate vcores) and
yarn.nodemanager.resource.detect-hardware-capabilities is set to true. The number of vcores will be calculated as number of CPUs * multiplier.
</description>
<name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
<value>1.0</value>
</property>
<!-- NodeManager使用内存数,默认8G,修改为4G内存 -->
<property>
<description>Amount of physical memory, in MB, that can be allocated
for containers. If set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
automatically calculated(in case of Windows and Linux).
In other cases, the default is 8192MB.
</description>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>4096</value>
</property>
<!-- nodemanager的CPU核数,不按照硬件环境自动设定时默认是8个,修改为4个 -->
<property>
<description>Number of vcores that can be allocated
for containers. This is used by the RM scheduler when allocating
resources for containers. This is not used to limit the number of
CPUs used by YARN containers. If it is set to -1 and
yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
automatically determined from the hardware in case of Windows and Linux.
In other cases, number of vcores is 8 by default.</description>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>4</value>
</property>
<!-- 容器最小内存,默认1G -->
<property>
<description>The minimum allocation for every container request at the RM in MBs. Memory requests lower than this will be set to the value of this property. Additionally, a node manager that is configured to have less memory than this value will be shut down by the resource manager.
</description>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>
</property>
<!-- 容器最大内存,默认8G,修改为2G -->
<property>
<description>The maximum allocation for every container request at the RM in MBs. Memory requests higher than this will throw an InvalidResourceRequestException.
</description>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>2048</value>
</property>
<!-- 容器最小CPU核数,默认1个 -->
<property>
<description>The minimum allocation for every container request at the RM in terms of virtual CPU cores. Requests lower than this will be set to the value of this property. Additionally, a node manager that is configured to have fewer virtual cores than this value will be shut down by the resource manager.
</description>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
</property>
<!-- 容器最大CPU核数,默认4个,修改为2个 -->
<property>
<description>The maximum allocation for every container request at the RM in terms of virtual CPU cores. Requests higher than this will throw an
InvalidResourceRequestException.</description>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>2</value>
</property>
<!-- 虚拟内存检查,默认打开,修改为关闭 -->
<property>
<description>Whether virtual memory limits will be enforced for
containers.</description>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!-- 虚拟内存和物理内存设置比例,默认2.1 -->
<property>
<description>Ratio between virtual memory to physical memory when setting memory limits for containers. Container allocations are expressed in terms of physical memory, and virtual memory usage is allowed to exceed this allocation by this ratio.
</description>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.1</value>
</property>
//开启服务器 查看8088的控制面板v
9.容量调度器多队列配置
1.一个default队列不能满足要求
2.hive/spark/flink每个框架的任务放入指定的队列(用得不多)
3.按业务模块创建模块,登录 下单分别创建队列
好处
1.怕直接写死循环导致资源耗尽
2.实现任务的降级使用,保证重要的任务优先执行,次要的后执行
#配置队列的capacity-scheduler.xml的参数,可以指定任务最大执行时间,超过后输出任务
#修改配置
<!-- 指定多队列,增加hive队列 -->
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default,hive</value>
<description>
The queues at the this level (root is the root queue).
</description>
</property>
<!-- 降低default队列资源额定容量为40%,默认100% -->
<property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>40</value>
</property>
<!-- 降低default队列资源最大容量为60%,默认100% -->
<property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>60</value>
</property>
#增加配置
<!-- 指定hive队列的资源额定容量 -->
<property>
<name>yarn.scheduler.capacity.root.hive.capacity</name>
<value>60</value>
</property>
<!-- 用户最多可以使用队列多少资源,1表示100% -->
<property>
<name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
<value>1</value>
</property>
<!-- 指定hive队列的资源最大容量 -->
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
<value>80</value>
</property>
<!-- 启动hive队列 -->
<property>
<name>yarn.scheduler.capacity.root.hive.state</name>
<value>RUNNING</value>
</property>
<!-- 哪些用户有权向队列提交作业 -->
<property>
<name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
<value>*</value>
</property>
<!-- 哪些用户有权操作队列,管理员权限(查看/杀死) -->
<property>
<name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
<value>*</value>
</property>
<!-- 哪些用户有权配置提交任务优先级 -->
<property>
<name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
<value>*</value>
</property>
<!-- 任务的超时时间设置:yarn application -appId appId -updateLifetime Timeout
参考资料:https://blog.cloudera.com/enforcing-application-lifetime-slas-yarn/ -->
<!-- 如果application指定了超时时间,则提交到该队列的application能够指定的最大超时时间不能超过该值。
-->
<property>
<name>yarn.scheduler.capacity.root.hive.maximum-application-lifetime</name>
<value>-1</value>
</property>
<!-- 如果application没指定超时时间,则用default-application-lifetime作为默认值 -->
<property>
<name>yarn.scheduler.capacity.root.hive.default-application-lifetime</name>
<value>-1</value>
</property>
#分发配置文件
xsync capacity-scheduler.xml
yarn rmadmin -refreshQueues #刷新队列,之前看页面只有default队列
#启动任务,需要指定hive队列执行
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0.jar wordcount -D mapreduce.job.queuename=hive /input /output4
#在java driver设置hive队列执行
conf.set("mapreduce.job.queuename","hive");
10.容量调度器任务优先级(资源已经不能分配了,分配任务时优先执行优先级高的)
#yarn-site.xml添加最大优先级
<property>
<name>yarn.cluster.max-application-priority</name>
<value>5</value>
</property>
#设置每个任务的优先级 在启动的时候,下面是计算PI的案例
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0.jar pi 5 2000000
#设置优先级为5,这个任务优先执行
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.3.0.jar pi -D mapreduce.job.priority=5 5 2000000
11.公平调度器 default
#yarn-size.xml设置 谁提交就在哪个队列执行,没有则在拒绝或者default队列执行,哪个任务就提交到那个用户名下的队列(自动)
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
<description>配置使用公平调度器</description>
</property>
<property>
<name>yarn.scheduler.fair.allocation.file</name>
<value>/opt/module/hadoop-3.3.0/etc/hadoop/fair-scheduler.xml</value>
<description>指明公平调度器队列分配配置文件</description>
</property>
<property>
<name>yarn.scheduler.fair.preemption</name>
<value>false</value>
<description>禁止队列间资源抢占</description>
</property>
#fair-scheduler.xml ,配置队列和策略
<?xml version="1.0"?>
<allocations>
<!-- 单个队列中Application Master占用资源的最大比例,取值0-1 ,企业一般配置0.1 -->
<queueMaxAMShareDefault>0.5</queueMaxAMShareDefault>
<!-- 单个队列最大资源的默认值 test atguigu default -->
<queueMaxResourcesDefault>4096mb,4vcores</queueMaxResourcesDefault>
<!-- 增加一个队列test -->
<queue name="test">
<!-- 队列最小资源 -->
<minResources>2048mb,2vcores</minResources>
<!-- 队列最大资源 -->
<maxResources>4096mb,4vcores</maxResources>
<!-- 队列中最多同时运行的应用数,默认50,根据线程数配置 -->
<maxRunningApps>4</maxRunningApps>
<!-- 队列中Application Master占用资源的最大比例 -->
<maxAMShare>0.5</maxAMShare>
<!-- 该队列资源权重,默认值为1.0 -->
<weight>1.0</weight>
<!-- 队列内部的资源分配策略 -->
<schedulingPolicy>fair</schedulingPolicy>
</queue>
<!-- 增加一个队列atguigu -->
<queue name="atguigu" type="parent">
<!-- 队列最小资源 -->
<minResources>2048mb,2vcores</minResources>
<!-- 队列最大资源 -->
<maxResources>4096mb,4vcores</maxResources>
<!-- 队列中最多同时运行的应用数,默认50,根据线程数配置 -->
<maxRunningApps>4</maxRunningApps>
<!-- 队列中Application Master占用资源的最大比例 -->
<maxAMShare>0.5</maxAMShare>
<!-- 该队列资源权重,默认值为1.0 -->
<weight>1.0</weight>
<!-- 队列内部的资源分配策略 -->
<schedulingPolicy>fair</schedulingPolicy>
</queue>
<!-- 任务队列分配策略,可配置多层规则,从第一个规则开始匹配,直到匹配成功 -->
<queuePlacementPolicy>
<!-- 提交任务时指定队列,如未指定提交队列,则继续匹配下一个规则; false表示:如果指定队列不存在,不允许自动创建-->
<rule name="specified" create="false"/>
<!-- 提交到root.group.username队列,若root.group不存在,不允许自动创建;若root.group.user不存在,允许自动创建 -->
<rule name="nestedUserQueue" create="true">
<rule name="primaryGroup" create="false"/>
</rule>
<!-- 最后一个规则必须为reject或者default。Reject表示拒绝创建提交失败,default表示把任务提交到default队列 -->
<rule name="reject" />
</queuePlacementPolicy>
</allocations>
12.yarn tools接口(有用)
#11的参数 但是执行我们的自己打的jar文件报错,不能指定队列的名称
#创建maven项目,引入依赖
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.0</version>
</dependency>
#创建demo,创建文件夹 com.atguigu.yarn 的WordCount类实现Tool接口
public class WordCount implements Tool {
private Configuration conf;
public int run(String[] args) throws Exception {
Job job = Job.getInstance(conf);
job.setJarByClass(WordCountDriver.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
return job.waitForCompletion(true) ? 0 : 1;
}
public void setConf(Configuration conf) {
this.conf = conf;
}
public Configuration getConf() {
return conf;
}
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text outK = new Text();
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
outK.set(word);
context.write(outK, outV);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
context.write(key, outV);
}
}
}
#在driver写new配置对象,使用多态
public class WordCountDriver {
private static Tool tool;
public static void main(String[] args) throws Exception {
// 1. 创建配置文件
Configuration conf = new Configuration();
// 2. 判断是否有tool接口
switch (args[0]){
case "wordcount":
tool = new WordCount();
break;
default:
throw new RuntimeException(" No such tool: "+ args[0] );
}
// 3. 用Tool执行程序
// Arrays.copyOfRange 将老数组的元素放到新数组里面
int run = ToolRunner.run(conf, tool, Arrays.copyOfRange(args, 1, args.length));
System.exit(run);
}
}
#hadoop中启动,传入参数wordcount
hadoop jar wc.jar com.atguigu.mapreduce.wordcount2.WordCountDriver wordcount -Dmapreduce.job.queuename=root.test /input /output2
#maven打包上传服务器运行
13.生产环境下使用
中小企业: 并发不高使用容量
中大企业 并发高,使用公平