实现pow函数

这篇博客探讨了如何完整且高效地实现任意double数base的整数次方ex。内容涵盖负数、0及正数次方的处理,以及利用递归将求次方问题分解为求0和1的特殊情况,通过位运算判断奇偶性以提高效率。
摘要由CSDN通过智能技术生成

数值的整数次方

(1)完整性考虑
不用考虑大数问题,就任意一个double数base的整数次方ex
这里就要完整的考虑问题,整数包括正数,负数,0.
首先如果base是0,那么它的任何次方都返回0
如果ex是0,那就直接返回1.
如果ex是负数,则定义一个flag来使求出来的数求倒
(2)求次方的效率解法
因为和上上上个算法一样,一个数的正数次方可以被分解
ex为奇数 pow(base,ex)=pow(base,ex/2)pow(base,ex/2)
偶数 pow(base,ex)=pow(base,ex-1/2)pow(base,ex-1/2)base
直接用递归到0和1即可。
判断一个数是不是奇数,就用与2取余或者是与1取位与,因为奇数的最后一位一定为1,推荐位运算

public class Solution {
   
    public double Power(double base, int exponent) {
   
        if(base==0.0)return 0.0;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值