【Ai绘图】关于如何鉴别图片是否是Ai生成的

最近这几年Ai绘图发展比较迅猛,现在很多Ai的成图能力已经很难与人画做区分了,不过作为使用过MIdjourney、Stable Diffusion和ChatGPT4这几个主流绘图AI的人,我个人总结了一些鉴别AI绘图的技巧。

1.对于细节的过分处理

很少有画师会对画面中一些无关紧要的细节去做精细的处理,毕竟这样本身对画面的实际效果提升意义不大,但是AI不同,由于AI是以像素点为单位进行的运算,其经常会在画面中添加过多的细节,导致画面重点失衡,以下面这张图为例:

正常来讲画面中心的人物应该是着重描写的对象,但实际情况是人物身上的细节甚至没有右侧楼房的多,而且因为整个画面中填充了太多细节导致图片看起来没有重点。

2.扁平化问题

说到底,AI是很难理解近大远小之类的物理规律的,在AI眼中图片就是一个平面,其只能依靠自己的模型尽可能的让画面保持正常,所以对于光影以及物体位置的处理很容易就出现问题,以下面这张图为例:

为了画面合理对远处的物体进行了过分的模糊化处理,但是枪口下方距离较近的地面又没有因为距离的靠近而变得清晰,如果是手绘一般会避免这种问题。

3.文字问题

除了ChatGPT4以外,其他绘图AI对于文字的处理基本上都是一塌糊涂,有时候绘画出的文字没有任何含义,有时候干脆自己造字,所以如果一张图片中本应出现文字的地方(文本,招牌之类的)没有出现相应的文字,或者出现的文字不符合任何一种语言,基本上就可以判定是AI绘制的:

没有任何意义的饭店招牌。

4.一些固定物体出错

如果画面中出现徽章、旗帜之类的造型比较固定的东西,AI是很难绘制出正确的形状的,这点主要还是因为AI对于图片的生成还是要依赖其模型,而模型中对于旗帜这种造型相似但细节不同的东西很容易混在一起。

图片不好过审,所以就不放了。

5.画风问题

其实说到底对于一个东西的鉴别能力取决于对其的熟悉程度,由于几个比较好用的模型几乎快让各个平台玩烂了,搞得大家一眼就能认出来是什么东西,其中使用最多的应该就是开源的Stable Diffusion的模型。

有些图片虽然没道理,但确实能一眼看出是AI画的。

人工智能安全 现在有很多技术可以欺骗人工智能, 也有很多人工智能技术被用来欺 骗人。在人工智能AI)时代,安全问题不容忽视。 近几年,人工智能技术在很多领域都取得了初步的成功,无论是图像 分类、视频监控领域的目标跟踪,还是自动驾驶、人脸识别、围棋等 方面, 都取得了非常好的进展。 那么, 人工智能技术到底安全不安全? 事实上,目前的人工智能技术还存在很多问题。 人工智能并不安全 现在有很多技术可以欺骗人工智能,如在图片上加入一些对抗干扰。 所谓对抗干扰,就是针对智能判别式模型的缺陷,设计算法精心构造 与正常样本差异极小、能使模型错误识别的样本。如图 1 所示,本来 是一幅手枪的图片, 如果加入一些对抗干扰, 识别结果就会产生错误, 模型会识别为不是枪。在人的前面挂一块具有特定图案的牌子,就能 使人在视频监控系统中"隐身"(见图 2)。在自动驾驶场景下,如果 对限速标识牌加一些扰动,就可以误导自动驾驶系统识别成 "Stop"(见图 3),显然这在交通上会引起很大的安全隐患。另一方 面,人工智能的一些技术现在正在被滥用来欺骗人。例如,利用人工 智能生成虚假内容,包括换脸视频、虚假新闻、虚假人脸、虚拟社交 账户等。 图 1 被暴恐检测系统识别成正常图片 图 2 在智能监控下隐身 图 3 误导自动驾驶系统 不只在图片和视频领域,在语音识别领域也存在这样的安全隐患。例 如,在语音中任意加入非常微小的干扰,语音识别系统也可能会把这 段语音识别错。同样,在文本识别领域,只需要改变一个字母就可以 使文本内容被错误分类。 除了对抗攻击这种攻击类型外,还有一种叫后门攻击的攻击类型。后 门攻击是指向智能识别系统的训练数据安插后门, 使其对特定信号敏 感,并诱导其产生攻击者指定的错误行为。例如,我们在对机器进行 训练时,在某一类的某些样本中插入一个后门模式,如给人的图像加 上特定的眼镜作为后门, 用一些训练上的技巧让机器人学习到眼镜与 某个判断结果(如特定的一个名人)的关联。训练结束后,这个模型针 对这样一个人还是能够做出正确的识别, 但如果输入另一个人的图片, 让他戴上特定的眼镜,他就会被识别成前面那个人。训练的时候,模 型里留了一个后门,这同样也是安全隐患。 除了对抗样本、后门外,如果 AI 技术被滥用,还可能会形成一些新 的安全隐患。例如,生成假的内容,但这不全都是人工智能生成的, 也有人为生成的。此前,《深圳特区报》报道了深圳最美女孩给残疾 乞丐喂饭,感动路人,人民网、新华社各大媒体都有报道。后来,人 们深入挖掘,发现这个新闻是人为制造的。现在社交网络上有很多这 样的例子,很多所谓的新闻其实是不真实的。一方面,人工智能可以 发挥重要作用,可以检测新闻的真假;另一方面,人工智能也可以用 来生成虚假内容,用智能算法生成一个根本不存在的人脸。 用人工智能技术生成虚假视频, 尤其是使用视频换脸生成某个特定人 的视频,有可能对社会稳定甚至国家安全造成威胁。例如,模仿领导 人讲话可能就会欺骗社会大众。因此,生成技术是否需要一些鉴别手 段或者相应的管理规范,这也是亟须探讨的。例如,生成虚假人脸, 建立虚假的社交账户,让它与很多真实的人建立关联关系,甚至形成 一些自动对话,看起来好像是一个真实人的账号,实际上完全是虚拟 生成的。这样的情况该如何管理还需要我们进一步探索和研究。 人工智能安全隐患的技术剖析 针对 AI 的安全隐患,要找到防御的方法,首先要了解产生安全隐患 的技术。以对抗样本生成为例,其主要分为 2 类:一类是白盒场景下 对抗样本生成;另一类为黑盒场景下对抗样本生成。白盒场景的模型 参数完全已知,可以访问模型中所有的参数,这个情况下攻击就会变 得相对容易一些,只需要评估信息变化的方向对模型输出的影响,找 到灵敏度最高的方向,相应地做出一些扰动干扰,就可以完成对模型 的攻击。黑盒场景下攻击则相对较难,大部分实际情况下都是黑盒场 景,我们依然可以对模型远程访问,输入样本,拿到检测结果,但无 法获得模型里的参数。 现阶段的黑盒攻击可大致分为 3 类。 第一类是基于迁移性的攻击方法, 攻击者可以利用目标模型的输入信息和输出信息, 训练出一个替换模 型模拟目标模型的决策边界, 并在替换模型中利用白盒攻击方法生成 对抗样本,最后利用对抗样本的迁移性完成对目标模型的攻击。第二 类是基于梯度估计的攻击方法, 攻击者可以利用有限差分以及自然进 化策略等方式来估计梯度信息, 同时结合白盒攻击方法生成对抗样本。 在自然进化策略中, 攻击者可以以多个随机分布的单位向量作为搜索 方向,并在这些搜索方向下最大化对抗目标的期望值。第三类是基于 决策边界的攻击方法,通过启发式搜索策略搜索决策边界,再沿决策 边界不断搜索距离原样本更近的对抗样本。 有攻击就有防御,针对对抗样本的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小辰代写

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值