目录
一、数据抽取(Extract):从源头捕获数据
1. 数据源类型与抽取策略
-
结构化数据源:如关系型数据库(MySQL、Oracle),通过JDBC直连或数据库日志(如MySQL的binlog)抽取数据。增量抽取时需借助时间戳字段或日志解析实现变化数据捕获(CDC)。
-
半结构化/非结构化数据:如JSON、XML文件或日志数据,通常采用文件监听机制或API接口(如RESTful API)实时/批量抽取。
-
全量抽取:首次数据迁移或结构变更时,直接导出全表数据(例如使用
SELECT *
或全表备份)。 -
增量抽取:通过时间戳、触发器或日志比对(如Oracle的物化视图)识别并抽取变化数据,降低源系统负载。
2. 技术实现要点
-
联机与脱机抽取:联机抽取直连源库,适合实时性要求高的场景;脱机抽取通过中间文件(如备份文件)实现,减少对源系统性能影响。
-
容错机制:记录抽取断点(如最后成功抽取的时间戳),确保异常中断后可从断点续传。
二、数据转换(Transform):数据清洗与标准化
1. 核心操作
-
数据清洗:
-
去重:通过唯一键(如主键)或哈希算法识别重复记录。
-
缺失值处理:填充默认值(如空字符串)、删除无效记录或标记异常数据。
-
格式统一:例如将日期字段从
YYYY-MM-DD
转为YYYYMMDD
,或统一电话号码的国别码格式。
-
-
数据映射:建立源字段与目标字段的对应关系,如将源系统的
customer_name
映射为数据仓库的client_fullname
。 -
复杂转换:
-
聚合计算:按时间维度汇总销售额(如
SUM(sales) GROUP BY month
)。 -
行列转换:将订单明细的多个行转为宽表结构,便于分析。
-
2. 技术实现工具
-
脚本与SQL:使用Python Pandas或Spark进行自定义转换(例:
df.drop_duplicates()
去重)。 -
ETL工具内置函数:如Kettle的“字段选择”组件、DataX的Transformer插件。
三、数据加载(Load):高效写入目标系统
1. 加载策略
-
全量加载:初始化数据仓库时,采用
TRUNCATE + INSERT
方式覆盖历史数据。 -
增量加载:
-
追加模式:仅插入新增数据(如日志类流水表)。
-
合并更新:使用
MERGE
语句或工具(如Matillion的Upsert组件)同步新增和更新记录。
-
2. 性能优化手段
-
禁用约束与索引:加载前临时禁用目标表的唯一性约束和索引,加载完成后重建。
-
并行加载:利用DataX的多线程插件或Spark分布式写入提升吞吐量。
-
分区与压缩:按时间分区存储数据,结合Snappy或GZIP压缩减少存储空间。
四、ETL工具选型与架构设计
1. 工具分类与典型应用
工具类型 | 代表工具 | 适用场景 | 特点 |
---|---|---|---|
开源工具 | Kettle、DataX | 中小规模数据同步,开发成本敏感 | 可视化界面,插件扩展灵活 |
云原生工具 | Matillion、AWS Glue | 云端数据集成,实时流处理需求 | 支持Serverless架构,按需付费 |
企业级工具 | Informatica、Datastage | 复杂业务逻辑,高可靠性要求 | 支持CDC、元数据管理,价格较高 |
2. 架构设计考量
-
批处理 vs 流处理:传统ETL以批处理为主;实时场景需结合Kafka、Flink实现流式ETL。
-
ELT模式:在大数据平台(如Hadoop)中,先加载原始数据到存储层(如HDFS),再利用计算引擎(Spark)执行转换,适用于海量数据处理。
五、常见挑战与解决方案
1、数据质量保障:
-
监控指标:记录清洗前后的数据量变化(如丢弃记录数),设置阈值告警。
-
数据血缘:通过工具(如Apache Atlas)追踪字段级数据流向,便于问题溯源。
2、性能瓶颈:
-
资源隔离:为ETL任务分配独立计算资源,避免与在线业务争抢CPU/内存。
-
增量优化:对频繁更新的表采用“拉链表”设计,减少全量比对开销。
3、合规与安全:
-
数据脱敏:在转换阶段对敏感字段(如身份证号)进行加密或掩码处理。
权限控制:限制ETL工具账号的源系统访问权限,仅允许读取必要表。
就像SELECT *
一时爽,数据清洗火葬场,ETL工程师的日常就是:
- 写SQL时:
优雅,永不过时
😎 - 调Kettle作业报错时:
我到底做错了什么??
🤬
如果这篇指南让你少踩一个坑,请点个赞让我知道——你的每个👍,都是拯救同行发际线的人道主义援助!🚑