【Leetcode栈与队列 150. 逆波兰表达式求值】C++ 「栈的经典应用|计算机原理」

🎈个人主页:算法诗人
✨收录专栏:算法诗人Leetcode揭秘之旅
🎉欢迎 👍点赞✍评论⭐收藏
🤝希望我的文章能对你们有所帮助,有不足的地方请在评论区留言指正,大家一起学习交流!🤗



Leetcode题目链接

150. 逆波兰表达式求值


一、题目描述

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 ‘+’、‘-’、‘*’ 和 ‘/’ 。
  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
  • 两个整数之间的除法总是 向零截断 。
  • 表达式中不含除零运算。
  • 输入是一个根据逆波兰表示法表示的算术表达式。
  • 答案及所有中间计算结果可以用 32 位 整数表示。

示例 1:
输入:tokens = [“2”,“1”,“+”,“3”,“*”]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:
输入:tokens = [“4”,“13”,“5”,“/”,“+”]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:
输入:tokens = [“10”,“6”,“9”,“3”,“+”,“-11”,““,”/“,””,“17”,“+”,“5”,“+”]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 <= tokens.length <= 104
  • tokens[i] 是一个算符(“+”、“-”、“*” 或 “/”),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中

二、解题思路

这道题的思路跟1047. 删除字符串中的所有相邻重复项232. 有效的括号是一样的,如果不太理解可以去查看之前的这两篇文章。

当我们遇到相邻两个元素要进行匹配或者消除时,我们都要想到栈的思想。

1047. 删除字符串中的所有相邻重复项这道题是用字符串来实现栈的思想,没有直接用到栈,这对我们栈的编程原理也有很好的锻炼。

232. 有效的括号这道题就直接用到了栈,跟本题的思路几乎是一致的,遇到匹配的括号和不匹配的括号时怎么处理。

本题就是类似的思想,只是这里变成了相邻两个元素进行计算,那我们就直接pop出相邻的两个值来进行计算,然后把结果push回栈里就好了。

这是本道题的思路,配合示例代码更好理解:

  1. 使用 stack 定义一个存放操作数的栈。
  2. 遍历逆波兰表达式中的每个元素。
  3. 如果当前元素是运算符(“+”、“-”、“*”、“/”),则从栈中弹出两个操作数,执行相应的运算,将结果推回栈中。
  4. 如果当前元素是操作数,将其转换为整数并推入栈中。
  5. 遍历完成后,栈中剩余的元素即为最终结果。
  6. 返回栈顶元素作为逆波兰表达式的计算结果。

三、示例代码

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        stack<int> stack;
        for(int i = 0; i < tokens.size(); i++)
        {
            if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/")
            {
                int num1 = stack.top();
                stack.pop();
                int num2 = stack.top();
                stack.pop();
                if(tokens[i] == "+")
                    stack.push(num2 + num1);
                else if(tokens[i] == "-")
                    stack.push(num2 - num1);
                else if(tokens[i] == "*")
                    stack.push(num2 * num1);
                else
                    stack.push(num2 / num1);
            }
            else
            {
                stack.push(stoi(tokens[i]));
            }
        }
        int result = stack.top();
        return result;
    }
};

时间复杂度: O(n)
空间复杂度: O(n)
其中 n 是逆波兰表达式中的元素个数

新手可能不理解的代码(其实是我自己学习到的新知识)

1. C++中单引号’'和双引号""的区别

单引号:

  • 用于表示单个字符,例如 ‘A’ 或 ‘5’。
  • 在内存中,单引号括起来的字符常量通常被解释为字符的 ASCII 值。

双引号:

  • 用于表示字符串,例如 “Hello, World!”。
  • 字符串是一个字符数组,以空字符 ‘\0’ 结尾。

2. 为什么在push入栈时要用到stoi()函数?

stoi()(String to Integer):

  • stoi() 用于将字符串转换为整数,返回 int 类型。
  • 如果转换后的值超出 int 的表示范围,stoi() 会触发 std::out_of_range 异常。

因为tokens中的元素是字符串string,我们放进栈中的都是整数类型int,这里要把字符串转换为整数类型才能便于之后取值出来运算或者取值得到最终的结果。

结尾碎碎念
“这次的算法解析只是冰山一角,未来我将持续分享更多有趣的算法问题,并提供更深入的解析。如果你对这个系列感兴趣,不要错过即将到来的更新!点赞、关注、收藏,如果有不同的解法欢迎留下你的评论,你们的支持就是我更新的最大动力。让我们一起探索更多算法的奇妙世界,这不仅是为了迎接面试挑战,更是为了成为在编程领域中游刃有余的专家。感谢大家的支持,期待未来更多的相遇和共同成长!”

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值