【背景】
在数字化飞速发展的时代,客户服务的质量和效率成为企业立足市场、赢得客户信赖的关键因素之一。随着人工智能技术的不断革新,智能客服应运而生,为企业与客户之间搭建起了更为便捷、高效的沟通桥梁。
传统的智能客服系统往往基于预设规则和简单的关键词匹配来回答客户的问题,虽然在一定程度上能够解决部分常见疑问,但面对复杂多样、语义丰富的客户咨询时,就显得力不从心了。例如,客户用各种不同表述方式询问产品的详细功能、不同产品之间的兼容性,或者是涉及到多方面业务细节的复杂问题时,传统智能客服很难准确理解意图并给出全面且精准的答复。
而近年来,大模型的出现无疑给智能客服领域带来了巨大的变革机遇。我所在的通信服务商也加快了在智能客服领域应用大模型技术解决上述传统客服的瓶颈。大模型凭借其强大的语言理解和生成能力,能够更好地捕捉客户问题中的语义信息,生成流畅且相对合理的回答。
然而,大模型也并非完美无缺。大模型所学习到的知识大多是基于广泛的通用文本,对于特定企业、特定业务领域内的专业知识和细节信息,有时候无法做到精准把控,比如通信行业,容易出现回答虽然语言通顺但却偏离实际业务情况的 “幻觉” 现象。
我所在的单位大模型智能客服项目的规划建设过程中,知识图谱的概念进入了视野,基于自身在通信行业正在经历建设大模型应用的智能客服的背景,我们开启了知识图谱了解、学习之旅。在接下来的博客内容中,我将分享知识图谱的点点滴滴,包括定义、数据类型、体系架构、知识图谱构建、融合以及应用现状等,希望能给同样关注知识图谱的朋友们带来一些启发和帮助。
学习是一种愉悦,一种收获,让我们在探索中感受快乐。欢迎关注、点赞和收藏~
1.知识图谱定义
知识图谱,本质上,是一种揭示实体之间关系的语义网络。用于对现实世界中的实体、概念、属性以及它们之间的关系进行建模,可以被视为一个由节点和边构成的图,其中节点代表物理世界中的实体或概念,而边则代表这些实体或概念之间的各种语义关系。
信息是指外部的客观事实。举例:桌上有一瓶水,温度是30°。