最大公约数问题

根据最大公约数的如下3条性质,采用递归法编写计算最大公约数的函数Gcd(),在主函数中调用该函数计算并输出从键盘任意输入的两正整数的最大公约数。
性质1 如果a>b,则a和b与a-b和b的最大公约数相同,即Gcd(a, b) = Gcd(a-b, b)
性质2 如果b>a,则a和b与a和b-a的最大公约数相同,即Gcd(a, b) = Gcd(a, b-a)
性质3 如果a=b,则a和b的最大公约数与a值和b值相同,即Gcd(a, b) = a = b``

#include <stdio.h>
int Gcd(int a,int b);
int main()
{
    int gcd,a,b;
    printf("Input a,b:");
    scanf("%d,%d",&a,&b);
    gcd=Gcd(a,b);
    if (-1==gcd)
        printf("Input number should be positive!\n");
    else
        printf("Greatest Common Divisor of %d and %d is %d\n",a,b,gcd);
}
int Gcd(int a, int b)
{
    if(a<0||b<0)
        return -1;
    if(a>b)
        return Gcd(a-b, b);
    else if(b>a)
        return Gcd(a, b-a);
    else if(a==b)
        return a ;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值