高数 | 定理及性质证明 | 反常积分审敛法为什么只需要看瑕点

本文探讨了反常积分中的瑕点概念,指出瑕点是函数在某点无界的间断点,导致反常积分成为瑕积分。同阶无穷大与无穷小的关系在积分收敛性中起关键作用。反常积分主要分为三种类型:无穷区间反常积分、无界函数反常积分和混合反常积分。理解瑕点对于正确处理反常积分问题至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 总结

 

 

 

注:这里的两个应该为同阶无穷大

注:这里的两个为同阶无穷小!总结为:同阶同敛散

拓展:瑕点

反常积分中的瑕点的含义:
如果函数f(x)在点a的一个邻域内无界,那么点a称为函数f(x)的瑕点(也称无界间断点)。无界函数的反常积分又称为瑕积分。
如果函数在点a的任一临域内都无界的意思是被积函数的第二类间断点,即在这点的被积函数不存在。
临域无界即这点的邻域是没有边界的,即不存在。判断反常函数的瑕点,不仅仅只是看分母为0的点,是所有使被积函数无意义的点。

反常积分的类型及于瑕点之间的关系:
1、无穷区间反常积分。
每个被积函数只能有一个无穷限,若上下限均为无穷限,则分区间积分。
2、无界函数反常积分。
即瑕积分,每个被积函数只能有一个瑕点,多个瑕点则分区间积分。
3、混合反常积分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值