线代 | 【行列式及矩阵】经典例题及方法总结

本文深入探讨线性代数中的行列式计算,包括具体型行列式的化基本形法、递推法和方程表示。同时,详细阐述矩阵的基本运算如施密特正交化,以及矩阵的逆、伴随矩阵和秩的相关理论与求解方法,是考研数学一线性代数部分的重要复习资料。
摘要由CSDN通过智能技术生成

第一章 行列式

一、具体型行列式的计算

1、化基本形法

爪形

异爪形

### 回答1: 以下是一些大学线性代数中的经典例题: 1. 求解线性方程组: x + 2y - z = 3 2x - y + 3z = 7 3x + y - 2z = 4 2. 求矩阵的逆: A = [1 2; 3 4] 3. 求向量的内积和外积: a = [1 2 3], b = [4 5 6] 4. 求矩阵的特征值和特征向量: A = [1 2; 2 1] 5. 求矩阵行列式: A = [1 2 3; 4 5 6; 7 8 9] 这些例题都是大学线性代数中比较常见的例题,通过练习这些例题可以帮助学生加深对线性代数的理解和掌握。 ### 回答2: 大学线性代数中,矩阵是一个重要的概念。矩阵的代数运算和性质在解决实际问题中起到了重要作用。下面我将介绍一道经典例题。 考虑一个线性方程组: x + 2y + 3z = 6 2x + 4y + 6z = 12 3x + 6y + 9z = 18 我们可以用矩阵的形式表示这个线性方程组: Ax = b 其中,A是一个3×3的系数矩阵,x是未知向量,b是常量向量。 为了求解这个线性方程组,我们可以通过矩阵的逆来解得x。首先,我们需要计算矩阵A的逆矩阵A⁻¹。 根据矩阵的性质,若矩阵A存在逆矩阵,那么AA⁻¹=I,其中I是单位矩阵。 对于给定的矩阵A,我们可以通过高斯-约旦消元法来计算它的逆矩阵。 首先,我们将矩阵A与单位矩阵连接在一起形成一个增广矩阵,即[A | I]。 然后,我们对增广矩阵进行行变换,使得A的左半部分变为单位矩阵,并使得右半部分变为逆矩阵。 最后,我们得到了增广矩阵的右半部分,即逆矩阵A⁻¹。 对于本例中的线性方程组,经过计算,我们得到了矩阵A的逆矩阵A⁻¹为: 1 0 0 0 1 0 0 0 1 接下来,我们将逆矩阵与方程组的常量向量b相乘,即A⁻¹b,得到未知向量x的解。 经过计算,我们得到了未知向量x的解为: x = 6 y = 0 z = 0 因此,原线性方程组的解为x = 6,y = 0,z = 0。 ### 回答3: 线性代数中有一道经典例题是求解矩阵的特征值和特征向量。特征值和特征向量是在矩阵运算中非常重要的概念,它们可以帮助我们了解矩阵的特性和性质。 给定一个n阶方阵A,如果存在一个非零向量x使得Ax=kx,其中k为一个常数,则称k为矩阵A的特征值,x为对应于特征值k的特征向量。 解题思路如下: 1. 先求出矩阵A的特征多项式f(λ) = |A - λI|,其中I为单位矩阵。 2. 根据特征多项式f(λ) = 0,求出所有的特征值λ。 3. 对于每个特征值λ,代入方程(A - λI)x = 0,求解特征向量x。 举个例子: 假设有一个2阶方阵A = [[1, 2], [3, 4]],我们来求解其特征值和特征向量。 1. 求解特征多项式f(λ) = |A - λI| = |[[1-λ, 2], [3, 4-λ]]| = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ - 2. 2. 令f(λ) = 0,得到特征多项式的根为λ1 = (5 + √33)/2, λ2 = (5 - √33)/2。 3. 根据(A - λI)x = 0,代入λ1得到[[1 - λ1, 2], [3, 4 - λ1]]x = 0,解这个方程组得到一个特征向量x1 = [1, (λ1 - 1)/2]。 同理,代入λ2得到[[1 - λ2, 2], [3, 4 - λ2]]x = 0,解这个方程组得到一个特征向量x2 = [1, (λ2 - 1)/2]。 因此,矩阵A的特征值为λ1 = (5 + √33)/2, λ2 = (5 - √33)/2,对应的特征向量分别为x1 = [1, (λ1 - 1)/2],x2 = [1, (λ2 - 1)/2]。 通过求解矩阵的特征值和特征向量,我们可以揭示矩阵的性质和特点,对于线性代数的学习和应用有很大帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值