一、多元函数微分法
1、链式求导法
2、全微分形式不变性
全微分运算的四则运算性质
3、隐函数微分法
3.1 一个方程的情形
-
经典例题
奇数个负1 偶数个正1
3.2 方程组的情形
个人总结:(仅供参考)
1、方程组法(最简单,考试无脑用这个)
直接分析自由变量个数,每个方程两边同时直接对x求导,解方程组2、链式求导法
第一种 分析变量之间关系:①根据题目中所给函数关系,画出树状关系图,注意叶子结点必须是自变量,且不能循环,然后按照复合函数求导来做
第二种 确定自由变量个数后,全部代成一个变量来做,使用公式法若有函数关系注意要将函数代入到最简3、全微分形式不变性
三、多元函数的极值与最值
1、无约束极值
2、条件极值与拉格朗日乘数法
3、最大最小值
四、常考题型与经典例题
1、连续、偏导数、全微分的概念及其之间的关系
可导但不连续的反例
2.复合函数的偏导数与全微分
求导后的f1,f2,仍然是复合!
3.隐函数的偏导数与全微分
4.求极值(无条件)
解出原函数的两种方法:①偏积分 ②凑微分
5.求连续函数f(x,y)在有界闭区域D上的最大最小值
6.最大最小值应用题.
更新一道很多人都可能搞不清的题:
【答疑】
这里求 dz/dx 有些小机灵鬼想用隐函数存在定理即公式法。我们说了,公式法不就是把什么什么都看成常数吗,那y也看成常数,这题就显然不对了。
为什么呢?
你想用的隐函数存在定理 是 二元函数 z=f(x,y) 由 隐函数F(x,y,z)=0 所确定,这个时候才看成常数,而本题中,是 z=f(x) 是一元函数,就该用一元函数背景下的隐函数存在定理。
运算过程中y是x函数。