高数 | 【多元函数微分学 计算篇】链式求导法、隐函数求导法、全微分形式不变性、多元函数求极值

本文详细介绍了多元函数的微分法,包括链式求导法、全微分形式不变性以及隐函数微分法。对于隐函数,区分了一元与方程组的情形,并提供了解题策略。此外,讨论了多元函数的无约束极值与拉格朗日乘数法在寻找最大最小值问题中的应用。最后,列举了常见的考试题型和解题技巧,特别强调了在隐函数求导中避免错误的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、多元函数微分法

1、链式求导法

 

 

 

 

 

 

 

 


 2、全微分形式不变性

 全微分运算的四则运算性质


 3、隐函数微分法

3.1 一个方程的情形

  •  经典例题

 

 

 

奇数个负1 偶数个正1

 3.2 方程组的情形

 

个人总结:(仅供参考)

1、方程组法(最简单,考试无脑用这个)
直接分析自由变量个数,每个方程两边同时直接对x求导,解方程组

2、链式求导法
第一种 分析变量之间关系:①根据题目中所给函数关系,画出树状关系图,注意叶子结点必须是自变量,且不能循环,然后按照复合函数求导来做
第二种 确定自由变量个数后,全部代成一个变量来做,使用公式法若有函数关系注意要将函数代入到最简 

3、全微分形式不变性


三、多元函数的极值与最值

1、无约束极值

 2、条件极值与拉格朗日乘数法

 3、最大最小值


四、常考题型与经典例题

1、连续、偏导数、全微分的概念及其之间的关系

可导但不连续的反例

 

 

 

2.复合函数的偏导数与全微分

 

 求导后的f1,f2,仍然是复合!

 

3.隐函数的偏导数与全微分

 4.求极值(无条件)

 

 解出原函数的两种方法:①偏积分  ②凑微分

 5.求连续函数f(x,y)在有界闭区域D上的最大最小值

 

 6.最大最小值应用题.

 

更新一道很多人都可能搞不清的题:

 

【答疑】

这里求 dz/dx 有些小机灵鬼想用隐函数存在定理即公式法。我们说了,公式法不就是把什么什么都看成常数吗,那y也看成常数,这题就显然不对了。

为什么呢?

你想用的隐函数存在定理 是 二元函数 z=f(x,y) 由 隐函数F(x,y,z)=0 所确定,这个时候才看成常数,而本题中,是 z=f(x) 是一元函数,就该用一元函数背景下的隐函数存在定理。

运算过程中y是x函数。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值